APPENDIX C: ANSWERS TO ODD-NUMBERED CHAPTER EXERCISES \& REVIEW EXERCISES \& SOLUTIONS TO PRACTICE TESTS

Answers to Odd-Numbered Chapter Exercises

CHAPTER 1

1. a. Interva
b. Ratio
d. Nominal
e. Ordinal
c. Nominal
2. Answers will vary.
3. Qualitative data are not numerical, whereas quantitative data are numerical. Examples will vary by student
4. A discrete variable may assume only certain values. A continuous variable may assume an infinite number of values within a given range. The number of traffic citations issued each day during February in Garden City Beach, South Carolina, is a discrete variable. The weight of commercial trucks passing the weigh station at milepost 195 on Interstate 95 in North Carolina is a continuous variable.
5. a. Ordina
b. Ratio
c. The newer system provides information on the distance between exits.
6. If you were using this store as typical of all Best Buy stores, then the daily number sold last month would be a sample. However, if you considered the store as the only store of interest, then the daily number sold last month would be a population.
7.

	Discrete Variable	Continuous Variable
Qualitative	b. Gender d. Soft drink preference g. Student rank in class h. Rating of a finance professor	
Quantitative	c. Sales volume of MP3 players f. SAT scores i. Number of home computers	a. Salary e. Temperature

	Discrete	Continuous
Nominal	b. Gender	
Ordinal	d. Soft drink preference g. Student rank in class h. Rating of a finance professor	
Interval	f. SAT scores	e. Temperature
Ratio	c. Sales volume of MP3 players i. Number of home computers	a. Salary

15. According to the sample information, $120 / 300$ or 40% would accept a job transfer.
16. a

Manufacturer	Difference (units)
Fiat Chrysler	151,254
Tesla (Est.)	65,730
Subaru	30,980
Volvo	17,609
Land Rover	14,767
Mitsubishi	13,903
VW	12,622
Mazda	11,878
BMW	5,225

Manufacturer	Difference (units)
Porsche	1,609
Audi	1,024
MINI	$(1,607)$
Others	$(1,650)$
smart	$(1,751)$
Kia	$(4,384)$
Toyota	$(5,771)$
Jaguar	$(9,159)$
Hyundai	$(9,736)$
Mercedes (includes Sprinter)	$(14,978)$
General Motors (Est.)	$(36,925)$
Honda	$(42,399)$
Ford	$(68,700)$
Nissan	$(110,081)$

b. Percentage differences with top five and bottom five

Manufacturer	\% Change from 2017
Tesla (Est.)	163.0%
Volvo	24.5%
Land Rover	22.1%
Mitsubishi	14.6%
Fiat Chrysler	8.0%
Subaru	5.3%
Mazda	4.5%
VW	4.1%
Porsche	3.1%
BMW	1.9%
Audi	0.5%
Toyota	-0.3%
Kia	-0.8%
GM (Est.)	-1.4%
Hyundai	-1.6%
Honda	-2.8%
Ford	-2.9%
MINI	-3.8%
Mercedes (includes Sprinter)	-4.5%
Nissan	-7.6%
Others	-8.7%
Jaguar	-25.3%
smart	-60.3%

c.

19. The graph shows a gradual increase for the years 2009 through 2012 followed by a decrease in earnings from 2012 through 2016. 2017 showed an increase over 2016. Between 2005 and 2017, the earnings ranged from less than $\$ 10$ billion to over $\$ 40$ billion. Recent changes may be related to the supply and demand for oil. Demand may be affected by other sources of energy generation, i.e., natural gas, wind, and solar)
21. a. League is a qualitative variable; the others are quantitative.
b. League is a nominal-level variable; the others are ratio-level variables.

CHAPTER 2

1. 25% market share.
2.

Season	Frequency	Relative Frequency
Winter	100	.10
Spring	300	.30
Summer	400	.40
Fall	$\underline{200}$	$\underline{1.00}$

5. a. A frequency table

Color	Frequency	Relative Frequency
Bright White	130	0.10
Metallic Black	104	0.08
Magnetic Lime	325	0.25
Tangerine Orange	455	0.35
Fusion Red	$\underline{286}$	$\underline{0.22}$
\quad Total	1,300	$\mathbf{1 . 0 0}$

b.

c.

d. 350,000 orange, 250,000 lime, 220,000 red, 100,000 white, and 80,000 black, found by multiplying relative frequency by 1,000,000 production.
7. $2^{5}=32,2^{6}=64$, therefore, 6 classes
9. $2^{7}=128,2^{8}=256$, suggests 8 classes
$i \geq \frac{\$ 567-\$ 235}{8}=41$ Class intervals of 45 or 50 would be acceptable
11. a. $2^{4}=16$ Suggests 5 classes.
b. $i \geq \frac{31-25}{5}=1.2 \quad$ Use interval of 1.5 .
c. 24
d.

Units	\boldsymbol{f}	Relative Frequency
24.0 up to 25.5	2	0.125
25.5 up to 27.0	4	0.250
27.0 up to 28.5	8	0.500
28.5 up to 30.0	0	0.000
30.0 up to 31.5	$\underline{2}$	$\underline{0.125}$
Total	$\underline{16}$	$\mathbf{1 . 0 0 0}$

e. The largest concentration is in the 27.0 up to 28.5 class (8).
13.

Number of Visits	\boldsymbol{f}
0 up to 3	9
3 up to 6	21
6 up to 9	13
9 up to 12	4
12 up to 15	3
15 up to 18	$\underline{1}$
\quad Total	51

b. The largest group of shoppers (21) shop at the BiLo Supermarket 3,4 , or 5 times during a month period. Some customers visit the store only 1 time during the month, but others shop as many as 15 times.
c.

Number of Visits	Percent of Total
0 up to 3	17.65
3 up to 6	41.18
6 up to 9	25.49
9 up to 12	7.84
12 up to 15	5.88
15 up to 18	$\underline{1.96}$
Total	100.00

15. a. Histogram
b. 100
c. 5
d. 28
e. 0.28
f. 12.5
g. 13
16. a. 50
b. 1.5 thousand miles, or 1,500 miles.
c.

d. $X=1.5, Y=5$
e.

f. For the 50 employees, about half traveled between 6,000 and 9,000 miles. Five employees traveled less than 3,000 miles, and 2 traveled more than 12,000 miles.
17. a. 40
b. 5
c. 11 or 12
d. About $\$ 18 / \mathrm{hr}$
e. About $\$ 9 / \mathrm{hr}$
f. About 75\%
18. a. 5
b.

Miles	CF
Less than 3	5
Less than 6	17
Less than 9	40
Less than 12	48
Less than 15	50

c.

d. About 8.7 thousand miles
23. a. A qualitative variable uses either the nominal or ordinal scale of measurement. It is usually the result of counts. Quantitative variables are either discrete or continuous. There is a natural order to the results for a quantitative variable. Quantitative variables can use either the interval or ratio scale of measurement.
b. Both types of variables can be used for samples and populations.
25. a. Frequency table
b.

\square Planned Activities
\square No Planned Activities
\square Not Sure
\square No Answer
d. A pie chart would be better because it clearly shows that nearly half of the customers prefer no planned activities.
27. $2^{6}=64$ and $2^{7}=128$, suggest 7 classes
29. a. 5 , because $2^{4}=16<25$ and $2^{5}=32>25$
b. $i \geq \frac{48-16}{5}=6.4 \quad$ Use interval of 7 .
c. 15
d.

Class	Frequency		
15 up to 22	III	3	
22 up to 29	HY III	8	
29 up to 36	H ${ }^{\text {III }}$	7	
36 up to 43	H	5	
43 up to 50	\\|	2	
		25	

e. It is fairly symmetric, with most of the values between 22 and 36.
31. a. $2^{5}=32,2^{6}=64,6$ classes recommended.
b. $i=\frac{10-1}{6}=1.5$ use an interval of 2 .
c. 0
d.

Class	Frequency
0 up to	2
2 up to	4
4 up to	6
6 up to	8
8 up to 10	12
10 up to 12	8

e. The distribution is fairly symmetric or bell-shaped with a large peak in the middle of the two classes of 4 up to 8.
33.

Number of Calls	Frequency
$4-\mathbf{1 5}$	9
$16-27$	4
$28-39$	6
$40-51$	$\mathbf{1}$
Grand Total	$\mathbf{2 0}$

This distribution is positively skewed with a "tail" to the right. Based on the data, 13 of the customers required between 4 and 27 attempts before actually talking with a person. Seven customers required more.
35. a. 56
b. 10 (found by $60-50$)
c. 55
d. 17
37. a. Use $\$ 35$ because the minimum is $(\$ 265-\$ 82) / 6=\$ 30.5$.
b.

$\$ \$ 70$ up to $\$ 105$	4	
105 up to	140	17
140 up to	175	14
175 up to	210	2
210 up to	245	6
245 up to	280	1

c. The purchases range from a low of about $\$ 70$ to a high of about $\$ 280$. The concentration is in the $\$ 105$ up to $\$ 140$ and $\$ 140$ up to $\$ 175$ classes.
39. Bar charts are preferred when the goal is to compare the actual amount in each category.

SC Income	Percent	Cumulative
Wages	73	73
Dividends	11	84
IRA	8	92
Pensions	3	95
Social Security	2	97
Other	3	100

By far the largest part of income in South Carolina is wages. Almost three-fourths of the adjusted gross income comes from wages. Dividends and IRAs each contribute roughly another 10\%.
43. a. Since $2^{6}=64<70<128=2^{7}, 7$ classes are recommended The interval should be at least $(1,002.2-3.3) / 7=142.7$. Use 150 as a convenient value.
b. Based on the histogram, the majority of people has less than $\$ 500,000$ in their investment portfolio and may not have enough money for retirement. Merrill Lynch financial advisors need to promote the importance of investing for retirement in this age group.

45. a. Pie chart
b. 700 , found by $0.7(1,000) \quad$ c. Yes, $0.70+0.20=0.90$
47. a.

b. 34.9%, found by $(84.6+62.3) / 420.9$
c. 69.3% found by $(84.6+62.3) /(84.6+62.3+32.4+18.6$ $+14.1)$)
49.

Brown, yellow, and red make up almost 75\% of the candies. The other 25% is composed of blue, orange, and green.
51. There are many choices and possibilities here. For example you could choose to start the first class at 160,000 rather than 120,000 . The choice is yours!
i $>=(919,480-167,962) / 7=107,360$. Use intervals of 120,000.

Selling Price (000)	Frequency	Cumulative Frequency
120 up to 240	26	26
240 up to 360	36	62
360 up to 480	27	89
480 up to 600	7	96
600 up to 720	4	100
720 up to 840	2	102
840 up to 960	1	105

a. Most homes (60%) sell between $\$ 240,000$ and $\$ 480,000$.
b. The typical price in the first class is $\$ 180,000$ and in the last class it is $\$ 900,000$
c.

Fifty percent (about 52) of the homes sold for about $\$ 320,000$ or less.
The top 10\% (about 90) of homes sold for at least \$520,000 About 41\% (about 41) of the homes sold for less than $\$ 300,000$.
d.

Two-, three-, and four-bedroom houses are most common with about 25 houses each. Seven- and eight-bedroom houses are rather rare.
53. Since $2^{6}=64<80<128=2^{7}$, use seven classes. The interval should be at least $(11,973-10,000) / 7=281$ miles. Use 300. The resulting frequency distribution is:

Class	\boldsymbol{f}
9,900 up to 10,200	8
10,200 up to 10,500	8
10,500 up to 10,800	11
10,800 up to 11,100	8
11,110 up to 11,400	13
11,400 up to 11,700	12
11,700 up to 12,000	20

a. The typical amount driven, or the middle of the distribution is about 11,100 miles. Based on the frequency distribution, the range is from 9,900 up to 12,000 miles.

b. The distribution is somewhat "skewed" with a longer "tail" to the left and no outliers.
c.

Forty percent of the buses were driven fewer than about 10800 miles. About 30% of the 80 buses (about 24) were driven less than 10500 miles.
d. The first diagram shows that Bluebird makes about 59\% of the buses, Keiser about 31% and Thompson only about 10%. The second chart shows that nearly 69% of the buses have 55 seats.

Bus Seat Capacity

CHAPTER 3

1. $\mu=5.4$, found by $27 / 5$
2. a. $\bar{x}=7.0$, found by $28 / 4$
b. $(5-7)+(9-7)+(4-7)+(10-7)=0$
3. $\bar{x}=14.58$, found by $43.74 / 3$
4. a. 15.4 , found by $154 / 10$
b. Population parameter, since it includes all the salespeople at Midtown Ford
5. a. $\$ 54.55$, found by $\$ 1,091 / 20$
b. A sample statistic-assuming that the power company serves more than 20 customers
6. $\bar{x}=\frac{\Sigma x}{n}$ so
$\Sigma x=\bar{x} \cdot n=(\$ 5,430)(30)=\$ 162,900$
7. a. No mode
b. The given value would be the mode.
c. 3 and 4 bimodal
8. a. Mean $=3.583$
b. Median $=5$
c. Mode $=5$
9. a. Median $=2.9$
b. Mode $=2.9$
10. $\bar{x}=\frac{647}{11}=58.82$

Median $=58$, Mode $=58$
Any of the three measures would be satisfactory.
21. a. $\bar{x}=\frac{85.9}{12}=7.16$
b. Median $=7.2$. There are several modes: 6.6, 7.2, and 7.3.
c. $\bar{x}=\frac{30.7}{4}=7.675$,

Median $=7.85$
About 0.5 percentage point higher in winter
23. $\$ 46.09$, found by $\frac{300(\$ 53)+400(\$ 42)+400(\$ 45)}{300+400+400}$
25. $\$ 22.50$, found by $[50(\$ 12)+50(\$ 20)+100(\$ 29)] / 200$
27. 12.8%, found by $\sqrt[5]{(1.08)(1.12)(1.14)(1.26)(1.05)}=1.128$
29. 12.28% increase, found by
$\sqrt[5]{(1.094)(1.138)(1.117)(1.119)(1.147)}=1.1228$
31. 1.60%, found by $\sqrt[7]{\frac{239.051}{213.967}}-1$
33. In 2017, 2.28% found by $\sqrt[6]{\frac{265.9}{232.2}}-1$

In 2020, 1.34\% found by $\sqrt[3]{\frac{276.7}{265.9}}-1$
The annual percent increase of subscribers is forecast to increase over the next 3 years.
35. a. 7 , found by $10-3$
b. 6 , found by $30 / 5$
c. 6.8 , found by $34 / 5$
d. The difference between the highest number sold (10) and the smallest number sold (3) is 7 . The typical squared deviation from 6 is 6.8 .
37. a. 30 , found by $54-24$
b. 38 , found by $380 / 10$
c. 74.4 , found by $744 / 10$
d. The difference between 54 and 24 is 30 . The average of the squared deviations from 38 is 74.4 .
39.

State	Mean	Median	Range
California	33.10	34.0	32
lowa	24.50	25.0	19

The mean and median ratings were higher, but there was also more variation in California.
41. a. 5
b. 4.4 , found by

$$
\frac{(8-5)^{2}+(3-5)^{2}+(7-5)^{2}+(3-5)^{2}+(4-5)^{2}}{5}
$$

43. a. $\$ 2.77$
b. 1.26, found by

$$
\begin{gathered}
\begin{array}{c}
(2.68-2.77)^{2}+(1.03-2.77)^{2}+(2.26-2.77)^{2} \\
+(4.30-2.77)^{2}+(3.58-2.77)^{2}
\end{array} \\
5
\end{gathered}
$$

45. a. Range: 7.3, found by 11.6 - 4.3. Arithmetic mean: 6.94, found by $34.7 / 5$. Variance: 6.5944 , found by $32.972 / 5$. Standard deviation: 2.568 , found by $\sqrt{6.5944}$.
b. Dennis has a higher mean return $(11.76>6.94)$. However, Dennis has greater spread in its returns on equity $(16.89>6.59)$.
46. a. $\bar{x}=4$

$$
s^{2}=\frac{(7-4)^{2}+\cdots+(3-4)^{2}}{5-1}=\frac{22}{5-1}=5.5
$$

b. $s=2.3452$
49. a. $\bar{x}=38$

$$
\begin{aligned}
s^{2} & =\frac{(28-38)^{2}+\cdots+(42-38)^{2}}{10-1} \\
& =\frac{744}{10-1}=82.667
\end{aligned}
$$

b. $s=9.0921$
51. a. $\bar{x}=\frac{951}{10}=95.1$

$$
s^{2}=\frac{(101-95.1)^{2}+\cdots+(88-95.1)^{2}}{10-1}
$$

$$
=\frac{1,112.9}{9}=123.66
$$

b. $s=\sqrt{123.66}=11.12$
53. About 69%, found by $1-1 /(1.8)^{2}$
55. a. About 95%
b. $47.5 \%, 2.5 \%$
57. Because the exact values in a frequency distribution are not known, the midpoint is used for every member of that class.
59.

Class	f	M	$f M$	($M-\bar{x}$)	$f(M-\bar{x})^{2}$
20 up to 30	7	25	175	-22.29	3,477.909
30 up to 40	12	35	420	-12.29	1,812.529
40 up to 50	21	45	945	-2.29	110.126
50 up to 60	18	55	990	7.71	1,069.994
60 up to 70	12	65	780	17.71	3,763.729
	70		3,310		10,234.287

$\bar{x}=\frac{3,310}{70}=47.29$
$s=\sqrt{\frac{10,234.287}{70-1}}=12.18$
61.

Number of Clients	\boldsymbol{f}	\boldsymbol{M}	$\boldsymbol{f M}$	$(\boldsymbol{M}-\overline{\boldsymbol{x}})$	$\boldsymbol{f}(\boldsymbol{M}-\overline{\boldsymbol{x}})^{\mathbf{2}}$
20 up to 30	1	25	25	-19.8	392.04
30 up to 40	15	35	525	-9.8	$1,440.60$
40 up to 50	22	45	990	0.2	0.88
50 up to 60	8	55	440	10.2	832.32
60 up to 70	4	65	$\frac{260}{2,240}$	20.2	$\frac{1,632.16}{4,298.00}$
	$\overline{50}$				
$\bar{x}=\frac{2,240}{50}=44.8$		$s=\sqrt{\frac{4,298}{50-1}}=9.37$			

63. a. Mean $=5$, found by $(6+4+3+7+5) / 5$.

Median is 5 , found by rearranging the values and selecting the middle value.
b. Population, because all partners were included
c. $\Sigma(x-\mu)=(6-5)+(4-5)+(3-5)+(7-5)+(5-5)=0$
65. $\bar{x}=\frac{545}{16}=34.06$

Median $=37.50$
67. The mean is 35.675 , found by $1,427 / 40$. The median is 36 , found by sorting the data and averaging the 20th and 21 st observations.
69. $\bar{x}_{w}=\frac{\$ 5.00(270)+\$ 6.50(300)+\$ 8.00(100)}{270+300+100}=\$ 6.12$
71. $\bar{x}_{w}=\frac{15,300(4.5)+10,400(3.0)+150,600(10.2)}{176,300}=9.28$
73. $G M=\sqrt[52]{\frac{5000000}{42000}}-1$, so about 9.63%
75. a. 55 , found by $72-17$
b. 17.6245 , found by the square root of $2795.6 / 9$
77. a. This is a population because it includes all the public universities in Ohio
b. The mean is 25,097 .
c. The median is 20,491 (University of Toledo).
d. There is no mode for this data.
e. I would select the median because the mean is biased by a few schools (Ohio State, Cincinnati, Kent State, and Ohio University) that have extremely high enrollments compared to the other schools.
f. The range is $(67,524-1,748)=65,776$.
g. The standard deviation is $17,307.39$.
79. a. There were 13 flights, so all items are considered
b. $\mu=\frac{2,259}{13}=173.77$
c. Range $=301-7=294$

$$
s=\sqrt{\frac{133,846}{13}}=101.47
$$

81. a. The mean is $\$ 717.20$, found by $\$ 17,930 / 25$. The median is $\$ 717.00$ and there are two modes, $\$ 710$ and $\$ 722$
b. The range is $\$ 90$, found by $\$ 771-\$ 681$, and the standard deviation is $\$ 24.87$, found by the square root of $14,850 / 24$.
c. From $\$ 667.46$ up to $\$ 766.94$, found by $\$ 717.20 \pm 2(\$ 24.87)$
82. a. $\bar{x}=\frac{273}{30}=9.1$, Median $=9$
b. Range $=18-4=14$

$$
s=\sqrt{\frac{368.7}{30-1}}=3.57
$$

c. $2^{5}=32$, so suggest 5 classes $i=\frac{18-4}{5}=2.8 \quad$ use $i=3$

Class	\boldsymbol{M}	\boldsymbol{f}	$\boldsymbol{f M}$	$\boldsymbol{M}-\overline{\boldsymbol{x}}$	$(\boldsymbol{M}-\overline{\boldsymbol{x}})^{\mathbf{2}}$	$\boldsymbol{f}(\boldsymbol{M}-\overline{\boldsymbol{x}})^{\mathbf{2}}$
3.5 up to 6.5	5	10	50	-4	16	160
6.5 up to 9.5	8	6	48	-1	1	6
9.5 up to 12.5	11	9	99	2	4	36
12.5 up to 15.5	14	4	56	5	25	100
15.5 up to 18.5	17	1	$\frac{17}{270}$	8	64	64

d. $\bar{x}=\frac{270}{30}=9.0$
$s=\sqrt{\frac{366}{30-1}}=3.552$
The mean and standard deviation from grouped data are estimates of the mean and standard deviations of the actual values.
85. $\bar{x}=13=\frac{910}{70}$
$s=5.228=\sqrt{1807.5 / 69}$
87. a. 1. The mean team salary is $\$ 139,174,000$ and the median is $\$ 141,715,000$. Since the distribution is skewed, the median value of $\$ 141,715,000$ is more typical.
2. The range is $\$ 158,590,000$; found by $\$ 227,400,000-$ $68,810,000$. The standard deviation is $\$ 41,101,000$. At least 95% of the team salaries are between $\$ 56,971,326$ and $\$$; found by $\$ 139,174,000$ plus or minus $2(\$ 41,101,000)$.
b. 4.10% per year, found by $\sqrt[18]{\frac{4,100,000}{1,990,000}-1}=1,04097=4.10 \%$

CHAPTER 4

1. In a histogram, observations are grouped so their individual identity is lost. With a dot plot, the identity of each observation is maintained.
2. a. Dot plot
b. 15
c. 1, 7
d. 2 and 3
3. Median $=53$, found by $(11+1)\left(\frac{1}{2}\right) \therefore 6$ th value in from lowest $Q_{1}=49$, found by $(11+1)\left(\frac{1}{4}\right) \therefore$ 3rd value in from lowest
$Q_{3}=55$, found by $(11+1)\left(\frac{3}{4}\right) \therefore$ 9th value in from lowest
4. a. $Q_{1}=33.25, Q_{3}=50.25$
b. $D_{2}=27.8, D_{8}=52.6$
c. $P_{67}=47$
5. a. 800
b. $Q_{1}=500, Q_{3}=1,200$
c. 700 , found by $1,200-500$ d. Less than 200 or more than 1,800
e. There are no outliers.
f. The distribution is positively skewed.
6.

The distribution is somewhat positively skewed. Note that the dashed line above 35 is longer than below 18.
13. a. The mean is 30.8 , found by $154 / 5$. The median is 31.0 , and the standard deviation is 3.96 , found by
$s=\sqrt{\frac{62.8}{4}}=3.96$
b. -0.15 , found by $\frac{3(30.8-31.0)}{3.96}$

Salary	$\left(\frac{(\boldsymbol{x}-\overline{\boldsymbol{x}})}{\boldsymbol{s}}\right)$	$\left(\frac{(\boldsymbol{x}-\overline{\boldsymbol{x}})}{\boldsymbol{s}}\right)^{\mathbf{3}}$
36	1.313131	2.264250504
26	-1.212121	-1.780894343
33	0.555556	0.171467764
28	-0.707071	-0.353499282
31	0.050505	0.000128826
		0.301453469

0.125 , found by $[5 /(4 \times 3)] \times 0.301$
15. a. The mean is 21.93 , found by $328.9 / 15$. The median is 15.8 , and the standard deviation is 21.18 , found by

$$
s=\sqrt{\frac{6,283}{14}}=21.18
$$

b. 0.868 , found by $[3(21.93-15.8)] / 21.18$
c. 2.444 , found by $[15 /(14 \times 13)] \times 29.658$
17. The correlation coefficient is 0.86 . Larger values of x are associated with larger values of y . The relationship is fairly strong.

Scatter Diagram of Y versus X

There is a positive relationship between the variables.
19. a. Both variables are nominal scale. b. Contingency table
c. Yes, 58.5%, or more than half of the customers order dessert. No, only 32% of lunch customers order dessert.
Yes, 85% of dinner customers order dessert.
21. a. Dot plot
b. 15
c. 5
23. a. $L_{50}=(20+1) \frac{50}{100}=10.50$

Median $=\frac{83.7+85.6}{2}=84.65$
$L_{25}=(21)(.25)=5.25$
$Q_{1}=66.6+.25(72.9-66.6)=68.175$
$L_{75}=21(.75)=15.75$
$Q_{3}=87.1+.75(90.2-87.1)=89.425$
b. $L_{26}=21(.26)=5.46$
$P_{26}=66.6+.46(72.9-66.6)=69.498$
$L_{83}=21(.83)=17.43$
$P_{83}=93.3+.43(98.6-93.3)$ $=95.579$
c.

25. a. $Q_{1}=26.25, Q_{3}=35.75$, Median $=31.50$

b. $Q_{1}=33.25, Q_{3}=38.75$, Median $=37.50$

c. The median time for public transportation is about 6 minutes less. There is more variation in public transportation. The difference between Q_{1} and Q_{3} is 9.5 minutes for public transportation and 5.5 minutes for private transportation.
27. The distribution is positively skewed. The first quartile is about $\$ 20$ and the third quartile is about $\$ 90$. There is one outlier located at $\$ 255$. The median is about $\$ 50$.
29. a

Median is 3,733 . First quartile is 1,478 . Third quartile is 6,141 . So prices over 13,135.5, found by $6,141+1.5 \times(6,141-1,478)$, are outliers. There are three $(13,925 ; 20,413$; and 44,312$)$.
b.

Median is 0.84 . First quartile is 0.515 . Third quartile is 1.12 . So sizes over 2.0275, found by $1.12+1.5(1.12-0.515)$, are outliers. There are three (2.03; 2.35 ; and 5.03).
c.

There is a direct association between them. The first observation is larger on both scales.
d.

Shape/				Ultra		
Cut	Average	Good	Ideal	Premium	Ideal	All
Emerald	0	0	1	0	0	1
Marquise	0	2	0	1	0	3
Oval	0	0	0	1	0	1
Princess	1	0	2	2	0	5
Round	$\frac{1}{2}$	$\frac{3}{5}$	$\frac{3}{6}$	$\frac{13}{17}$	$\frac{3}{3}$	$\frac{23}{33}$
\quadTotal	2	5	6	17		

The majority of the diamonds are round (23). Premium cut is most common (17). The Round Premium combination occurs most often (13).
31. $s k=0.065$ or $s k=\frac{3(7.7143-8.0)}{3.9036}=-0.22$
33.

As age increases, the number of accidents decreases.
35. a. $139,340,000$
b. 5.4% unemployed, found by $(7,523 / 139,340) 100$
c. $\mathrm{Men}=5.64 \%$

Women = 5.12\%
37.
a. Box plot of age assuming the current year is 2018 .

Distribution of stadium is highly positively skewed to the right. Any stadium older than 50.375 years (Q3 + 1.5(Q3Q1) $=28.25+1.5(28.25-13.5)$ is an outlier. Boston, Chicago Cubs, LA Dodgers, Oakland Athletics, and LA Angels.
b.

Salary

The first quartile is $\$ 103.56$ million and the third is $\$ 166.28$ million. Outliers are greater than Q3 + 1.5(Q3-Q1) or $166.28+$ $1.5^{*}(166.28-103.56)=\$ 260.36$ million. The distribution is positively skewed. However in 2018, there were no outliers.
c.

The correlation coefficient is 0.43 . The relationship is generally positive but the relationship is generally weak. Higher salaries are not strongly associated with more wins.
d.

The dot plot shows a range of wins from the high 40s to the 100s. Most teams appear to win between 65 and 90 games in a season. 13 teams won 90 or more games. 9 teams won less than 70 games. That leaves 16 teams that won between 70 and 90 games.

CHAPTER 5

1.

	Person	
Outcome	$\mathbf{1}$	$\mathbf{2}$
1	A	A
2	A	F
3	F	A
4	F	F

3. a. . 176 , found by $\frac{6}{34}$ b. Empirical
4. a. Empirical
b. Classical
c. Classical
d. Empirical, based on seismological data
5. a. The survey of 40 people about environmental issues
b. 26 or more respond yes, for example.
c. $10 / 40=.25$
d. Empirical
e. The events are not equally likely, but they are mutually exclusive.
6. a. Answers will vary. Here are some possibilities: 1236,5124 , 6125, 9999.
b. $(1 / 10)^{4}$
c. Classical
7. $P(A$ or $B)=P(A)+P(B)=.30+.20=.50$
$P($ neither $)=1-.50=.50$.
8. a. $102 / 200=.5$
b. .49 , found by $61 / 200+37 / 200=.305+.185$. Special rule of addition.
9. $P($ above $C)=.25+.50=.75$
10. $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=.20+.30-.15=.35$
11. When two events are mutually exclusive, it means that if one occurs, the other event cannot occur. Therefore, the probability of their joint occurrence is zero.
12. Let A denote the event the fish is green and B be the event the fish is male.
a. $P(A)=80 / 140=0.5714$
b. $P(B)=60 / 140=0.4286$
c. $P(A$ and $B)=36 / 140=0.2571$
d. $P(A$ or $B)=P(A)+P(B)-P(A$ and $B)=80 / 140+60 / 140-$ $36 / 140=104 / 140=0.7429$
13. $P(A$ and $B)=P(A) \times P(B \mid A)=.40 \times .30=.12$
14. . 90 , found by $(.80+.60)-.5$. 10 , found by ($1-.90$).
15. a. $P\left(A_{1}\right)=3 / 10=.30$
b. $P\left(B_{1} \mid A_{2}\right)=1 / 3=.33$
c. $P\left(B_{2}\right.$ and $\left.A_{3}\right)=1 / 10=.10$
16. a. A contingency table
b. .27 , found by $300 / 500 \times 135 / 300$
c. The tree diagram would appear as

Joint Probabilities r	
$(50 / 500)(16 / 50)$	$=.032$
$(50 / 500)(12 / 50)$	$=.024$
$(50 / 500)(22 / 50)$	$=.044$
$(150 / 500)(45 / 150)$	$=.090$
$(150 / 500)(60 / 150)$	$=.120$
$(150 / 500)(45 / 150)$	$=.090$
$(300 / 500)(93 / 300)$	$=.186$
$(300 / 500)(72 / 300)$	$=.144$
$(300 / 500)(135 / 300)$	$=.270$
Total	$\xlongequal[1.000]{ }$

31. a. Out of all 545 students, 171 prefer skiing. So the probability is $171 / 545$, or 0.3138 .
b. Out of all 545 students, 155 are in junior college. Thus, the probability is $155 / 545$, or 0.2844 .
c. Out of 210 four-year students, 70 prefer ice skating. So the probability is $70 / 210$, or 0.3333 .
d. Out of 211 students who prefer snowboarding, 68 are in junior college. So the probability is $68 / 211$, or 0.3223 .
e. Out of 180 graduate students, 74 prefer skiing and 47 prefer ice skating. So the probability is $(74+47) / 180=121 / 180$, or 0.6722 .
32. $P\left(A_{1} \mid B_{1}\right)=\frac{P\left(A_{1}\right) \times P\left(B_{1} \mid A_{1}\right)}{P\left(A_{1}\right) \times P\left(B_{1} \mid A_{1}\right)+P\left(A_{2}\right) \times P\left(B_{1} \mid A_{2}\right)}$

$$
=\frac{.60 \times .05}{(.60 \times .05)+(.40 \times .10)}=.4286
$$

35. $P($ night \mid win $)=\frac{P(\text { night }) P(\text { win } \mid \text { night })}{P(\text { night }) P(\text { win } \mid \text { night })+P(\text { day }) P(\text { win } \mid \text { day })}$

$$
=\frac{(.70)(.50)}{[(.70)(.50)]+[(.30)(.90)]}=.5645
$$

37. $P($ cash | $>\$ 50)$

$$
\begin{aligned}
= & \frac{P(\text { cash }) P(>\$ 50 \mid \text { cash })}{[P(\text { cash }) P(>\$ 50 \mid \text { cash })} \\
& +P(\text { credit }) P(>\$ 50 \mid \text { credit }) \\
& +P(\text { debit }) P(>\$ 50 \mid \text { debit })] \\
= & \frac{(.30)(.20)}{(.30)(.20)+(.30)(.90)+(.40)(.60)}=.1053
\end{aligned}
$$

39. a. $78,960,960$
b. 840 , found by $(7)(6)(5)(4)$. That is $7!/ 3$!
c. 10 , found by $5!/ 3!2$!
40. 210 , found by $(10)(9)(8)(7) /(4)(3)(2)$
41. 120 , found by 5 !
42. (4)(8)(3) $=96$ combinations
43. a. Asking teenagers to compare their reactions to a newly developed soft drink.
b. Answers will vary. One possibility is more than half of the respondents like it.
44. Subjective
45. a. $4 / 9$, found by $(2 / 3) \cdot(2 / 3)$
b. $3 / 4$, because $(3 / 4) \cdot(2 / 3)=0.5$
46. a. . 8145 , found by $(.95)^{4}$
b. Special rule of multiplication
c. $P(A$ and B and C and $D)=P(A) \times P(B) \times P(C) \times P(D)$
47. a. . 08 , found by $.80 \times .10$
b. No; 90% of females attended college, 78% of males

d. Yes, because all the possible outcomes are shown on the tree diagram.
48. a. 0.57 , found by $57 / 100$
b. 0.97 , found by $(57 / 100)+(40 / 100)$
c. Yes, because an employee cannot be both.
d. 0.03 , found by $1-0.97$
49. a. $1 / 2$, found by $(2 / 3)(3 / 4)$
b. $1 / 12$, found by $(1 / 3)(1 / 4)$
c. $11 / 12$, found by $1-1 / 12$
50. a. 0.9039 , found by $(0.98)^{5}$
b. 0.0961 , found by $1-0.9039$
51. a. 0.0333 , found by $(4 / 10)(3 / 9)(2 / 8)$
b. 0.1667 , found by $(6 / 10)(5 / 9)(4 / 8)$
c. 0.8333 , found by $1-0.1667$
d. Dependent
52. a. 0.3818 , found by $(9 / 12)(8 / 11)(7 / 10)$
b. 0.6182 , found by $1-0.3818$
53. a. $P(\mathrm{~S}) \cdot P(\mathrm{R} \mid \mathrm{S})=.60(.85)=0.51$
b. $P(\mathrm{~S}) \cdot P(\mathrm{PR} \mid \mathrm{S})=.60(1-.85)=0.09$
54. a. $P($ not perfect $)=P$ (bad sector) $+P$ (defective)

$$
=\frac{112}{1,000}+\frac{31}{1,000}=.143
$$

b. $P($ defective \mid not perfect $)=\frac{.031}{.143}=.217$
71. $P($ poor \mid profit $)=\frac{.10(.20)}{.10(.20)+.60(.80)+.30(.60)}=.0294$
73. a. $0.1+0.02=0.12$
b. $1-0.12=0.88$
c. $(0.88)^{3}=0.6815$
d. $1-.6815=0.3185$
75. Yes, 256 is found by 2^{8}.
77. . 9744 , found by $1-(.40)^{4}$
79. a. 0.193 , found by $.15+.05-.0075=.193$
b. .0075, found by (.15)(.05)
81. a. $P(F$ and $>60)=.25$, found by solving with the general rule of multiplication: $P(\mathrm{~F}) \cdot P(>60 \mathrm{IF})=(.5)(.5)$
b. 0
c. . 3333 , found by $1 / 3$
83. $26^{4}=456,976$
85. $1 / 3,628,800$
87. a. $P(\mathrm{D})=.20(.03)+.30(.04)+.25(.07)+.25(.065)=.05175$
b. $\quad P($ Tyson \mid defective $)=$

$$
\begin{aligned}
& \frac{.20(.03)}{[.20(.03)+.30(.04)}=.1159 \\
& +.25(.07)+.25(.065)]
\end{aligned}
$$

Supplier	Joint	Revised
Tyson	.00600	.1159
Fuji	.01200	.2319
Kirkpatricks	.01750	.3382
Parts	$\underline{.01625}$	$\underline{.3140}$
	.05175	$\mathbf{1 . 0 0 0 0}$

89. 0.512 , found by $(0.8)^{3}$
90. .525, found by $1-(.78)^{3}$
91. a.

Wins	\# Teams
$40-49$	1
$50-59$	1
$60-69$	6
$70-79$	4
$80-89$	7
$90-99$	8
$100-109$	$\frac{3}{\mathbf{3 0}}$

1. $11 / 30=0.37$
2. $10 / 11=0.91$
3. Winning 90 or more games in a season does not guarantee a place in the end-ofseason playoffs
b.

Frequency (\# teams) by League			
Home Runs	American	National	Grand Total
$\mathbf{1 2 0 - 1 4 9}$	1	2	3
$\mathbf{1 5 0 - 1 7 9}$	4	7	11
$\mathbf{1 8 0 - 2 0 9}$	5	3	8
$\mathbf{2 1 0 - 2 3 9}$	4	3	7
$\mathbf{2 4 0 - 2 6 9}$	1		1
Grand Total	$\mathbf{1 5}$	$\mathbf{1 5}$	$\mathbf{3 0}$
	Relative		
Home Runs	Frequency		
	American	National	Grand Total
$\mathbf{1 2 0 - 1 4 9}$	6.67%	13.33%	10.00%
$\mathbf{1 5 0 - 1 7 9}$	26.67%	46.67%	36.67%
$\mathbf{1 8 0 - 2 0 9}$	33.33%	20.00%	26.67%
$\mathbf{2 1 0 - 2 3 9}$	26.67%	20.00%	23.33%
$\mathbf{2 4 0 - 2 6 9}$	6.67%	0.00%	3.33%
Grand Total	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$	$\mathbf{1 0 0 . 0 0 \%}$

1. In the American League, the probability that a team hits 180 or more homeruns if 0.67 .
2. In the National League, the probability that a team hits 180 or more homeruns is 0.40 .
3. There is clear difference in the distribution of homeruns between the American and National Leagues. There are many potential reasons for the difference. One of the reasons may be the use of a designated hitter.

CHAPTER 6

1. Mean $=1.3$, variance $=.81$, found by:

$$
\begin{aligned}
\mu= & 0(.20)+1(.40)+2(.30)+3(.10)=1.3 \\
\sigma^{2}= & (0-1.3)^{2}(.2)+(1-1.3)^{2}(.4) \\
& +(2-1.3)^{2}(.3)+(3-1.3)^{2}(.1) \\
= & 81
\end{aligned}
$$

3. Mean $=14.5$, variance $=27.25$, found by:

$$
\begin{aligned}
\mu= & 5(.1)+10(.3)+15(.2)+20(.4)=14.5 \\
\sigma^{2}= & (5-14.5)^{2}(.1)+(10-14.5)^{2}(.3) \\
& +(15-14.5)^{2}(.2)+(20-14.5)^{2}(.4) \\
= & 27.25
\end{aligned}
$$

5. a

Calls, \boldsymbol{x}	Frequency	$\boldsymbol{P}(\boldsymbol{x})$	$\boldsymbol{x P}(\boldsymbol{x})$	$(\boldsymbol{x}-\boldsymbol{\mu})^{2} \boldsymbol{P}(\boldsymbol{x})$
0	8	.16	0	.4624
1	10	.20	.20	.0980
2	22	.44	.88	.0396
3	9	.18	.54	.3042
4	$\frac{1}{50}$.02	$\underline{.08}$	$\frac{.1058}{1.0100}$

b. Discrete distribution, because only certain outcomes are possible.
c. 0.20 found by $P(x=3)+P(x=4)=0.18+0.02=0.20$
d. $\mu=\Sigma x \cdot P(x)=1.70$
e. $\sigma=\sqrt{1.01}=1.005$
7.

Amount	$\boldsymbol{P}(\boldsymbol{x})$	$\boldsymbol{x P} \boldsymbol{(x)}$	$(\boldsymbol{x}-\boldsymbol{\mu})^{\mathbf{2}} \boldsymbol{P}(\boldsymbol{x})$
10	.50	5	60.50
25	.40	10	6.40
50	.08	4	67.28
100	.02	$\underline{2}$	$\underline{124.82}$
		21	$\mathbf{2 5 9 . 0 0}$

a. 0.10 found by $P(x=50)+P(x=100)=0.08+0.02=0.10$
b. $\quad \mu=\Sigma x P(x)=21$
c. $\sigma^{2}=\Sigma(x-\mu)^{2} P(x)=259$
$\sigma=\sqrt{259}=16.093$
9. Using the binomial table, Excel, or the binomial formula:

\boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{x})$
0	0.4096
1	0.4096
2	0.1536
3	0.0256
4	0.0016

Using the binomial formula with $x=2$ as an example:
$P(2)=\frac{4!}{2!(4-2)!}(.2)^{2}(.8)^{4-2}=0.1536$
11. a.

\boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{x})$
0	.064
1	.288
2	.432
3	.216

b. $\quad \mu=1.8$
$\sigma^{2}=0.72$ $\sigma=\sqrt{0.72}=.8485$
13. a. . 2668 , found by $P(2)=\frac{9!}{(9-2)!2!}(.3)^{2}(.7)^{7}$
b. .1715 , found by $P(4)=\frac{9!}{(9-4)!4!}(.3)^{4}(.7)^{5}$
c. .0404 , found by $P(0)=\frac{9!}{(9-0)!0!}(.3)^{0}(.7)^{9}$
15. a. .2824, found by $P(0)=\frac{12!}{(12-0)!0!}(.1)^{0}(.9)^{12}$
b. . 3766 , found by $P(1)=\frac{12!}{(12-1)!1!}(.1)^{1}(.9)^{11}$
c. 2301 , found by $P(2)=\frac{12!}{(12-2)!2!}(.1)^{2}(.9)^{10}$
d. $\mu=1.2$, found by $12(.1)$ $\sigma=1.0392$, found by $\sqrt{1.08}$
17. a. The random variable is the count of the 15 accountants who have a CPA. The random variable follows a binomial probability distribution. The random variable meets all 4 criteria for a binomial distributor: (1) Fixed number of trials (15), (2) each trial results in a success or failure (the accountant has a CPA or not), (3) known probability of success (0.52), and (4) each trial is independent of any other selection.
b. Using the binomial table, Excel, or the binomial formula, the probability distribution follows. $P(5$ of the 15 accountants with a CPA) $=0.0741$.

\boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{x})$		\boldsymbol{x}	$\boldsymbol{P}(\boldsymbol{x})$
$\mathbf{0}$	0.0000		8	$\mathbf{Q} .2020$
1	0.0003		9	0.1702
2	0.0020		10	0.1106
3	0.0096		11	0,0545
4	0.0311		12	0.0197
5	0.0741		13	0.0049
6	0.1338		14	0.0008
7	0.1864		15	0.0001

c. 0.3884 found by $P(x=7)+P(x=8)$
d. Mean $=n \pi=(15)(.52)=7.8$ accountants
e. Variance $=n \pi(1-\pi)=(15)(.52)(.48)=3.744$
19. a. 0.296 , found by using Appendix B. 1 with n of $8, \pi$ of 0.30 , and x of 2
b. $P(x \leq 2)=0.058+0.198+0.296=0.552$
c. 0.448 , found by $P(x \geq 3)=1-P(x \leq 2)=1-0.552$
21. a. 0.387 , found from Appendix $B .1$ with n of $9, \pi$ of 0.90 , and x of 9 b. $P(x<5)=0.001$
c. 0.992 , found by $1-0.008$
d. 0.947 , found by $1-0.053$
23. a. $\mu=10.5$, found by $15(0.7)$ and $\sigma=\sqrt{15(0.7)(0.3)}=1.7748$
b. 0.2061 , found by $\frac{15!}{10!5!}(0.7)^{10}(0.3)^{5}$
c. 0.4247 , found by $0.2061+0.2186$
d. 0.5154 , found by $0.2186+0.1700+0.0916+0.0305+0.0047$
25. a. Given $N=12,7$ boys and 5 girls.
$P(3$ boys on a team of 5$)=\frac{\left({ }_{7} C_{3}\right)\left({ }_{5} C_{2}\right)}{\left({ }_{12} C_{5}\right)}=.4419$
$P(2$ girls on a team of 5$)=\frac{\left.{ }_{5} C_{2}\right)\left({ }_{7} C_{3}\right)}{\left.{ }_{12} C_{5}\right)}=.4419$
Using the multiplication rule, the probability is (.4419) (.4419) $=.1953$
b. $P(5$ boys on a team of 5$)=\frac{\left({ }_{7} C_{5}\right)\left({ }_{5} C_{0}\right)}{\left({ }_{12} C_{5}\right)}=0.027$
c. Using the complement rule: $P(1$ or more girls $)=1-P(0$ girls on a team of 5)

$$
=1-\frac{\left({ }_{5} C_{0}\right)\left({ }_{7} C_{5}\right)}{\left({ }_{12} C_{5}\right)}=1-0.027=0.973
$$

27. N is 10 , the number of loans in the population; S is 3 , the number of underwater loans in the population; x is 0 , the number of selected underwater loans in the sample; and n is 2 , the size of the sample. Use formula (6-6) to find

$$
P(0)=\frac{\left({ }_{7} C_{2}\right)\left({ }_{3} C_{0}\right)}{{ }_{10} C_{2}}=\frac{21(1)}{45}=0.4667
$$

29. $\quad P(2)=\frac{\left[{ }_{9} C_{3}\right]\left[6 C_{2}\right]}{\left[{ }_{15} C_{5}\right]}=\frac{84(15)}{3003}=.4196$
30. a. . 6703
b. .3297
31. a. . 0613
b. .0803
32.

$\mu=6$

$P(x \geq 5)=1-(.0025+.0149+.0446+.0892+.1339)=.7149$
37. A random variable is an outcome that results from a chance experiment. A probability distribution also includes the likelihood of each possible outcome.
39. $\quad \mu=\$ 1,000(.25)+\$ 2,000(.60)+\$ 5,000(.15)=\$ 2,200$
$\sigma^{2}=(1,000-2,200)^{2} .25+(2,000-2,200)^{2} .60+$
$(5,000-2,200)^{2} .15$
$=1,560,000$
41. $\mu=12(.25)+\cdots+15(.1)=13.2$
$\sigma^{2}=(12-13.2)^{2} .25+\cdots+(15-13.2)^{2} .10=0.86$
$\sigma=\sqrt{0.86}=.927$
43. a. $510(.35)=3.5$
b. $P(x=4)={ }_{10} C_{4}(.35)^{4}(.65)^{6}=210(.0150)(.0754)=.2375$
c. $P(x \geq 4)={ }_{10} C_{x}(.35)^{x}(.65)^{10-x}$
$=2375+.1536+\cdots+.0000=.4862$
45. a. 6 , found by 0.4×15
b. 0.0245 , found by $\frac{15!}{10!5!}(0.4)^{10}(0.6)^{5}$
c. 0.0338 , found by $0.0245+0.0074+0.0016+0.0003+0.0000$
d. 0.0093 , found by $0.0338-0.0245$
47. a. $\mu=20(0.075)=1.5$

$$
\sigma=\sqrt{20(0.075)(0.925)}=1.1779
$$

b. 0.2103 , found by $\frac{20!}{0!20!}(0.075)^{0}(0.925)^{20}$
c. 0.7897 , found by $1-0.2103$
49. a. 0.2285 , found by $\frac{16!}{3!13!}(0.15)^{3}(0.85)^{13}$
b. 2.4 , found by $(0.15)(16)$
c. 0.79 , found by $.0743+.2097+.2775+.2285$
51. 0.2784 , found by $0.1472+0.0811+0.0348+0.0116+$ $0.0030+0.0006+0.0001+0.0000$
53. a.

0	0.0002	7	0.2075
1	0.0019	8	0.1405
2	0.0116	9	0.0676
3	0.0418	10	0.0220
4	0.1020	11	0.0043
5	0.1768	12	0.0004
6	0.2234		

b. $\mu=12(0.52)=6.24 \quad \sigma=\sqrt{12(0.52)(0.48)}=1.7307$
c. 0.1768
d. 0.3343 , found by $0.0002+0.0019+0.0116+0.0418+0.1020+0.1768$
55. a. $P(1)=\frac{\left.\left[{ }_{7} C_{2}\right]_{3} C_{1}\right]}{\left[{ }_{10} C_{3}\right]}=\frac{(21)(3)}{120}=.5250$
b. $P(0)=\frac{\left[{ }_{7} C_{3}\right]\left[3 C_{0}\right]}{\left[{ }_{10} C_{3}\right]}=\frac{(35)(1)}{120}=.2917$
$P(x \geq 1)=1-P(0)=1-.2917=.7083$
57. $P(x=0)=\frac{\left[{ }_{8} C_{4}\right]\left[{ }_{4} C_{0}\right]}{\left[{ }_{12} C_{4}\right]}=\frac{70}{495}=.141$
59. a. . 0498 b. .7746 , found by $(1-.0498)^{5}$
61. a. 0183
b. 1954
c. 6289
d. .5665
63. a. 0.1733 , found by $\frac{(3.1)^{4} e^{-3.1}}{4!}$
b. 0.0450 , found by $\frac{(3.1)^{0} e^{-3.1}}{0!}$
c. 0.9550 , found by $1-0.0450$
65. $\mu=n \pi=23\left(\frac{2}{113}\right)=.407$
$P(2)=\frac{(.407)^{2} \mathrm{e}^{-.407}}{2!}=0.0551$
$P(0)=\frac{(.407)^{0} e^{-.407}}{0!}=0.6656$
67. Let $\mu=n \pi=155(1 / 3,709)=0.042$
$P(4)=\frac{0.042^{4} e^{-0.042}}{4!}=0.00000012 \quad$ Very unlikely!
69. a. Using the entire binomial probability distribution, with a probability of success equal to 30% and number of trials equal to 40 , there is an 80% chance of leasing 10 or more cars. Note that the expected value or number of cars sold with probability of success equal to 30% and trials equal to 40 is: $n \pi=(40)(0.30)=12$.
b. Of the 40 vehicles that Zook Motors sold only 10 , or 25%, were leased. So Zook's probability of success (leasing a car) is 25%. Using .25 as the probability of success, Zook's probability of leasing 10 or more vehicles in 40 trials is only 56%. The data indicates that Zoot leases vehicles at a lower rate than the national average.
71. The mean number of home runs per game is 2.2984 . The average season home runs per team is 186.167 . Then $186.167 / 162 \times 2$ $=2.2984$.
a. $P(x=0)=\frac{\mu^{0} e^{-2.2984}}{0!}=.1004$
b. $P(x=2)=\frac{\mu^{2} e^{-2.2984}}{2!}=.2652$
c. $P(X \geq 4)=0.2004$, found by
$1-P(X<4)=(.1004+.2308+.2652+.2032)=.7996$

CHAPTER 7

1. a. $b=10, a=6$
b. $\mu=\frac{6+10}{2}=8$
c. $\sigma=\sqrt{\frac{(10-6)^{2}}{12}}=1.1547$
d. Area $=\frac{1}{(10-6)} \cdot \frac{(10-6)}{1}=1$
e. $P(x>7)=\frac{1}{(10-6)} \cdot \frac{10-7}{1}=\frac{3}{4}=.75$
f. $P(7 \leq x \leq 9)=\frac{1}{(10-6)} \cdot \frac{(9-7)}{1}=\frac{2}{4}=.50$
g. $P(x=7.91)=0$.

For a continuous probability distribution, the area for a point value is zero.
3. a. 0.30 , found by $(30-27) /(30-20)$
b. 0.40 , found by $(24-20) /(30-20)$
5. a. $a=0.5, b=3.00$
b. $\mu=\frac{0.5+3.00}{2}=1.75$

$$
\sigma=\sqrt{\frac{(3.00-.50)^{2}}{12}}=.72
$$

c. $P(x<1)=\frac{1}{(3.0-0.5)} \cdot \frac{1-.5}{1}=\frac{.5}{2.5}=0.2$
d. 0 , found by $\frac{1}{(3.0-0.5)} \frac{(1.0-1.0)}{1}$
e. $P(x>1.5)=\frac{1}{(3.0-0.5)} \cdot \frac{3.0-1.5}{1}=\frac{1.5}{2.5}=0.6$
7. The actual shape of a normal distribution depends on its mean and standard deviation. Thus, there is a normal distribution, and an accompanying normal curve, for a mean of 7 and a standard deviation of 2 . There is another normal curve for a mean of $\$ 25,000$ and a standard deviation of $\$ 1,742$, and so on.
9. a. 490 and 510 , found by 500 ± 1 (10)
b. 480 and 520 , found by $500 \pm 2(10)$
c. 470 and 530 , found by $500 \pm 3(10)$
11. $z_{\text {Rob }}=\frac{\$ 70,000-\$ 80,000}{\$ 5,000}=-2$
$z_{\text {Rachel }}=\frac{\$ 70,000-\$ 55,000}{\$ 8,000}=1.875$
Adjusting for their industries, Rob is well below average and Rachel well above.
13. a. 1.25 , found by $z=\frac{25-20}{4.0}=1.25$
b. 0.3944 , found in Appendix B. 3
c. 0.3085 , found by $z=\frac{18-20}{2.5}=-0.5$

Find 0.1915 in Appendix B. 3 for $z=-0.5$, then $0.5000-$ $0.1915=0.3085$.
15. a. 0.2131 , found by $z=\frac{35.00-29.81}{9.31}=0.56$ Then find 0.2131 in Appendix B. 3 for a $z=0.56$.
b. 0.2869 , found by $0.5000-0.2131=0.2869$
c. 0.1469 , found by $z=\frac{20.00-29.81}{9.31}=-1.05$

For a $z=-1.05$, find 0.3531 in Appendix B.3, then $0.5000-$ $0.3531=0.1469$.
17. a. 0.8276 : First find $z=-1.5$, found by $(44-50) / 4$ and $z=$ $1.25=(55-50) / 4$. The area between -1.5 and 0 is 0.4332 and the area between 0 and 1.25 is 0.3944 , both from Appendix B.3. Then adding the two areas we find that $0.4332+0.3944=0.8276$.
b. 0.1056 , found by $0.5000-.3944$, where $z=1.25$
c. 0.2029: Recall that the area for $z=1.25$ is 0.3944 , and the area for $z=0.5$, found by $(52-50) / 4$, is 0.1915 . Then subtract $0.3944-0.1915$ and find 0.2029 .
19. a. 0.1151: Begin by using formula (7-5) to find the z-value for $\$ 3,500$, which is $(3,500-2,878) / 520$, or 1.20 . Then see Appendix B .3 to find the area between 0 and 1.20 , which is 0.3849 . Finally, since the area of interest is beyond 1.20 , subtract that probability from 0.5000 . The result is $0.5000-0.3849$, or 0.1151.
b. 0.0997: Use formula (7-5) to find the z-value for $\$ 4,000$, which is $(4,000-2,878) / 520$, or 2.16 . Then see Appendix B. 3 for the area under the standard normal curve. That probability is 0.4846 . Since the two points (1.20 and 2.16) are on the same side of the mean, subtract the smaller probability from the larger. The result is $0.4846-0.3849=0.0997$.
c. 0.8058 : Use formula ($7-5$) to find the z-value for $\$ 2,400$, which is -0.92 , found by $(2,400-2,878) / 520$. The corresponding area is 0.3212 . Since -0.92 and 2.16 are on different sides of the mean, add the corresponding probabilities. Thus, we find $0.3212+0.4846=0.8058$.
21. a. 0.0764 , found by $z=(20-15) / 3.5=1.43$, then $0.5000-$ $0.4236=0.0764$
b. 0.9236 , found by $0.5000+0.4236$, where $z=1.43$
c. 0.1185 , found by $z=(12-15) / 3.5=-0.86$.

The area under the curve is 0.3051 , then $z=(10-15) / 3.5=$ -1.43 . The area is 0.4236 . Finally, $0.4236-0.3051=0.1185$.
23. $x=56.60$, found by adding 0.5000 (the area left of the mean) and then finding a z-value that forces 45% of the data to fall inside the curve. Solving for $x: 1.65=(x-50) / 4$, so $x=56.60$.
25. $\$ 1,630$, found by $\$ 2,100-1.88(\$ 250)$
27. a. 214.8 hours: Find a z-value where 0.4900 of area is between 0 and z. That value is $z=2.33$. Then solve for $x: 2.33=$ $(x-195) / 8.5$, so $x=214.8$ hours.
b. 270.2 hours: Find a z-value where 0.4900 of area is between 0 and $(-z)$. That value is $z=-2.33$. Then solve for $x:-2.33=$ $(x-290) / 8.5$, so $x=270.2$ hours.
29. 41.7%, found by $12+1.65(18)$
31. a. 0.3935 , found by $1-\mathrm{e}^{[(-1 / 60)(30)]}$
b. 0.1353 , found by $e^{[(-1 / 60)(120)]}$
c. 0.1859 , found by $\mathrm{e}^{[(-1 / 60)(45)]}-\mathrm{e}^{[(-1 / 60)(75)]}$
d. 41.59 seconds, found by $-60 \ln (0.5)$
33. a. 0.5654 , found by $1-e^{[(-1 / 18)(15)]}$, and 0.2212 , found by $1-\mathrm{e}^{[(-1 / 60)(15)]}$
b. 0.0013 , found by $\mathrm{e}^{[(-1 / 18)(120)]}$, and 0.1353 , found by $\mathrm{e}^{[(-1 / 60)(120)]}$
c. 0.1821 , found by $e^{[(-1 / 18)(30)]}-e^{[(-1 / 18)(90)]}$, and 0.3834 , found by $\mathrm{e}^{[(-1 / 60)(30)]}-\mathrm{e}^{[(-1 / 60)(90)]}$
d. 4 minutes, found by $-18 \ln (0.8)$, and 13.4 minutes, found by $-60 \ln (0.8)$
35. a. O. For a continuous probability distribution, there is no area for a point value.
b. 0 . For a continuous probability distribution, there is no area for a point value.
37. a. $\mu=\frac{11.96+12.05}{2}=12.005$
b. $\sigma=\sqrt{\frac{(12.05-11.96)^{2}}{12}}=.0260$
c. $P(x<12)=\frac{1}{(12.05-11.96)} \frac{12.00-11.96}{1}=\frac{.04}{.09}=.44$
d. $P(x>11.98)=\frac{1}{(12.05-11.96)}\left(\frac{12.05-11.98}{1}\right)$

$$
=\frac{.07}{.09}=.78
$$

e. All cans have more than 11.00 ounces, so the probability is 100%.
39. a. $\mu=\frac{4+10}{2}=7$
b. $\sigma=\sqrt{\frac{(10-4)^{2}}{12}}=1.732$
c. $P(x<6)=\frac{1}{(10-4)} \times\left(\frac{6-4}{1}\right)=\frac{2}{6}=.33$
d. $P(x>5)=\frac{1}{(10-4)} \times\left(\frac{10-5}{1}\right)=\frac{5}{6}=.83$
41. Based on the friend's information, the probability that the wait time is any value more than 30 minutes is zero. Given the data (wait time was 35 minutes), the friend's information should be rejected. It was false.
43. a. $0.4015, z$ for 900 is: $\frac{900-1,054.5}{120}=-1.29$. Using the z-table, probability is .4015 .
b. 0.0985 , found by $0.5000-0.4015[0.4015$ found in part (a)] c. $0.7884 ; z$ for 900 is: $\frac{900-1,054.5}{120}=-1.29, z$ for 1200 is: $\frac{1,200-1,054.5}{120}=1.21$. Adding the two corresponding probabilities, $0.4015+0.3869=.7884$.
d. 0.2279 ; z for 900 is: $\frac{900-1,054.5}{120}=-1.29, z$ for 1000 is: $\frac{1,000-1,054.5}{120}=-0.45$. Subtracting the two corresponding probabilities, $0.4015-0.1736=.2279$.
45. a. 0.3015 , found by $0.5000-0.1985$
b. 0.2579 , found by $0.4564-0.1985$
c. 0.0011 , found by $0.5000-0.4989$
d. 1,818 , found by $1,280+1.28(420)$
47. a. $0.0968, z$ for 300 is: $\frac{300-270}{23}=1.30$. Using the z-table, probability is .4032 . Subtracting from $0.5,0.5000-0.4032=$ 0.0968.
b. $0.9850, z$ for 220 is: $\frac{220-270}{23}=-2.17$. Using the z-table, probability is .4850 . Adding $0.5,0.5000+0.4850=0.9850$.
c. 0.8882 ; Using the results from parts (a) and (b), the z for 220 is -2.17 with a probability of .4850 ; the z for 300 is 1.30 with a probability of 0.4032 . Adding the two probabilities, (0.4032 $+0.4850)=0.8882$.
d. 307.7 ; The z-score for the upper 15% of the distribution is 1.64 . So the time associated with the upper 15% is 1.64 standard deviations added to the mean, or $270+1.64(23)=307.7$ minutes.
49. About 4,099 units, found by solving for $x \cdot 1.65=(x-4,000) / 60$
51. a. 15.39%, found by $(8-10.3) / 2.25=-1.02$, then $0.5000-0.3461=0.1539$.
b. 17.31%, found by:
$z=(12-10.3) / 2.25=0.76$. Area is 0.2764 .
$z=(14-10.3) / 2.25=1.64$. Area is 0.4495 .
The area between 12 and 14 is 0.1731 , found by 0.4495 0.2764 .
c. The probability is virutally zero. Applying the Empirical Rule, for 99.73% of the days, returns are between 3.55 and 17.05, found by $10.3 \pm 3(2.25)$. Thus, the chance of less than 3.55 returns is rather remote.
53. a. 21.19%, found by $z=(9.00-9.20) / 0.25=-0.80$, so $0.5000-$ $0.2881=0.2119$.
b. Increase the mean. $z=(9.00-9.25) / 0.25=-1.00, P=$ $0.5000-0.3413=0.1587$.
Reduce the standard deviation. $\sigma=(9.00-9.20) / 0.15=$ $-1.33 ; P=0.5000-0.4082=0.0918$.
Reducing the standard deviation is better because a smaller percent of the hams will be below the limit.
55. The z-score associated with $\$ 50,000$ is 8.25 : $(50,000-$ $33,500) / 2000$. That is, $\$ 50,000$ is 8.25 standard deviations above the mean salary. Conclusion: The probability that someone in the same business has a salary of $\$ 50,000$ is zero. This salary would be exceptionally unusual.
57. a. 0.4262 , found by $1-e^{[(-1 / 27)(15)]}$
b. 0.1084 , found by $\mathrm{e}^{[(-1 / 27)(60)]}$
c. 0.1403 , found by $\mathrm{e}^{[(-1 / 27)(30)]}-e^{[(-1 / 27)(45)]}$
d. 2.84 secs, found by $-27 \ln (0.9)$
59. a. 0.2835 , found by $1-e^{[(-1 / 300,000)(100,000)]}$
b. 0.1889 , found by $\mathrm{e}^{[(-1 / 300,000)(500,000)]}$
c. 0.2020 , found by $e^{[(-1 / 300,000)(200,000)]}-e^{[(-1 / 300,000)(350,000)]}$
d. Both the mean and standard deviation are 300,000 hours.
61. a.

Salary (\$ mil)	
Mean	139.17
Median	141.72
Population standard deviation	40.41
Skewness	0.17
Range	158.59
Minimum	68.81
Maximum	227.40
Salary	

The distribution of salary is approximately normal. The mean and median are about the same, and skewness is about zero. These statistics indicate a normal symmetric distribution. The box plot also supports a conclusion that the distribution of salary is normal.
b.

Stadium Age	
Mean	27.4
Median	18.5
Population standard deviation	24.7
Skewness	2.2
Range	105.0
Minimum	1.0
Maximum	106.0

Based on the descriptive statistics and the box plot, stadium age is not normally distributed. The distribution is highly skewed toward the oldest stadiums. See the coefficient of skewness. Also see that the mean and median are very different. The difference is because the mean is affected by the two oldest stadium ages.

CHAPTER 8

1. a. 303 Louisiana, 5155 S. Main, 3501 Monroe, 2652 W. Central
b. Answers will vary.
c. 630 Dixie Hwy, 835 S. McCord Rd, 4624 Woodville Rd
d. Answers will vary.
2. a. Bob Schmidt Chevrolet Great Lakes Ford Nissan Grogan Towne Chrysler Southside Lincoln Mercury
Rouen Chrysler Jeep Eagle
b. Answers will vary.
c. York Automotive

Thayer Chevrolet Toyota
Franklin Park Lincoln Mercury
Mathews Ford Oregon Inc.
Valiton Chrysler
5. a.

Sample	Values	Sum	Mean
1	12,12	24	12
2	12,14	26	13
3	12,16	28	14
4	12,14	26	13
5	12,16	28	14
6	14,16	30	15

b. $\mu_{\bar{x}}=(12+13+14+13+14+15) / 6=13.5$ $\mu=(12+12+14+16) / 4=13.5$
c. More dispersion with population data compared to the sample means. The sample means vary from 12 to 15 , whereas the population varies from 12 to 16 .
7. a.

Sample	Values	Sum	Mean
1	$12,12,14$	38	12.66
2	$12,12,15$	39	13.00
3	$12,12,20$	44	14.66
4	$14,15,20$	49	16.33
5	$12,14,15$	41	13.66
6	$12,14,15$	41	13.66
7	$12,15,20$	47	15.66
8	$12,15,20$	47	15.66
9	$12,14,20$	46	15.33
10	$12,14,20$	46	15.33

b.

$$
r_{\bar{x}}=\frac{(12.66+\cdots+15.33+15.33)}{10}=14.6
$$

$$
\mu=(12+12+14+15+20) / 5=14.6
$$

c. The dispersion of the population is greater than that of the sample means. The sample means vary from 12.66 to 16.33, whereas the population varies from 12 to 20 .
9. a. 20 , found by ${ }_{6} C_{3}$

Sample	Cases	Sum	Mean
Ruud, Wu, Sass	$3,6,3$	12	4.00
Ruud, Sass, Flores	$3,3,3$	9	3.00
	\vdots	\vdots	\vdots
Sass, Flores, Schueller	$3,3,1$	7	2.33

c. $\mu_{\bar{x}}=2.67$, found by $\frac{53.33}{20}$
$\mu=2.67$, found by $(3+6+3+3+0+1) / 6$.
They are equal.
d.

Sample Mean	Number of Means	Probability
1.33	3	.1500
2.00	3	.1500
2.33	4	.2000
3.00	4	.2000
3.33	3	.1500
4.00	$\frac{3}{20}$	$\underline{.1500}$
		1.0000

The population has more dispersion than the sample means The sample means vary from 1.33 to 4.0. The population varies from 0 to 6 .
11. a.

b.

Sample	Sum	$\overline{\boldsymbol{x}}$	Sample	Sum	$\overline{\boldsymbol{x}}$
1	11	2.2	6	20	4.0
2	31	6.2	7	23	4.6
3	21	4.2	8	29	5.8
4	24	4.8	9	35	7.0
5	21	4.2	10	27	5.4

The mean of the 10 sample means is 4.84 , which is close to the population mean of 4.5 . The sample means range from 2.2 to 7.0 , whereas the population values range from 0 to 9 . From the above graph, the sample means tend to cluster between 4 and 5 .
13. a.-c. Answers will vary depending on the coins in your possession.
f. Sampling error of more than 1 hour corresponds to times of less than 34 or more than 36 hours. $z=\frac{34-35}{5.5 / \sqrt{25}}=-0.91$; $z=\frac{36-35}{5.5 / \sqrt{25}}=0.91$. Subtracting: $0.5-.3186=.1814$ in each tail. Multiplying by 2 , the final probability is .3628 .
15. a. $z=\frac{63-60}{12 / \sqrt{9}}=0.75$. So probability is 0.2266 , found by $0.5000-0.2734$.
b. $z=\frac{56-60}{12 / \sqrt{9}}=-1$. So the probability is 0.1587 , found by $0.5000-0.3413$
c. 0.6147 , found by $0.3413+0.2734$
17. $z=\frac{1,950-2,200}{250 / \sqrt{50}}=-7.07 \quad p=1, \quad$ or virtually certain
19. a. Kiehl's, Banana Republic, Cariloha, Nike, and Windsor.
b. Answers may vary.
c. Tilly's, Fabletics, Banana Republic, Madewell, Nike, Guess, Ragstock, Soma
21. a.

Samples	Mean	Deviation from Mean	Square of Deviation
1,1	1.0	-1.0	1.0
1,2	1.5	-0.5	0.25
1,3	2.0	0.0	0.0
2,1	1.5	-0.5	0.25
2,2	2.0	0.0	0.0
2,3	2.5	0.5	0.25
3,1	2.0	0.0	0.0
3,2	2.5	0.5	0.25
3,3	3.0	1.0	1.0

b. Mean of sample means is $(1.0+1.5+2.0+\ldots+3.0) / 9=$ $18 / 9=2.0$. The population mean is $(1+2+3) / 3=6 / 3=2$. They are the same value.
c. Variance of sample means is $(1.0+0.25+0.0+\ldots+3.0) / 9$ $=3 / 9=1 / 3$. Variance of the population values is $(1+0+1) / 3$ $=2 / 3$. The variance of the population is twice as large as that of the sample means.
d. Sample means follow a triangular shape peaking at 2 . The population is uniform between 1 and 3 .
23. Larger samples provide narrower estimates of a population mean. So the company with 200 sampled customers can provide more precise estimates. In addition, they selected consumers who are familiar with laptop computers and may be better able to evaluate the new computer.
25. a. We selected $60,104,75,72$, and 48 . Answers will vary.
b. We selected the third observation. So the sample consists of 75, 72, 68, 82, 48. Answers will vary.
c. Number the first 20 motels from 00 to 19. Randomly select three numbers. Then number the last five numbers 20 to 24 . Randomly select two numbers from that group.
27. a. $(79+64+84+82+92+77) / 6=79.67 \%$
b. 15 found by ${ }_{6} \mathrm{C}_{2}$
c.

Sample	Value	Sum	Mean
1	79,64	143	71.5
2	79,84	163	81.5
\vdots	\vdots	\vdots	\vdots
15	92,77	169	$\frac{84.5}{1,195.0}$

d. $\mu_{\overline{\mathrm{x}}}=79.67$, found by $1,195 / 15$. $\mu=79.67$, found by $478 / 6$.
They are equal.
e. Answers will vary. Not likely as the student is not graded on all available information. Based on these test sores however, this student has a $8 / 15$ chance of receiving a higher grade with this method than the average and a $7 / 15$ chance of receiving a lower grade.
29. a. 10 , found by ${ }_{5} C_{2}$
b.

Number of Shutdowns	Mean	Number of Shutdowns	Mean
4,3	3.5	3,3	3.0
4,5	4.5	3,2	2.5
4,3	3.5	5,3	4.0
4,2	3.0	5,2	3.5
3,5	4.0	3,2	2.5

Sample Mean	Frequency	Probability
2.5	2	.20
3.0	2	.20
3.5	3	.30
4.0	2	.20
4.5	$\underline{1}$	$\underline{10}$
	10	1.00

c. $\mu_{\bar{x}}=(3.5+4.5+\cdots+2.5) / 10=3.4$
$\mu=(4+3+5+3+2) / 5=3.4$
The two means are equal.
d. The population values are relatively uniform in shape. The distribution of sample means tends toward normality.
31. a. The distribution will be normal.
b. $\sigma_{\bar{x}}=\frac{5.5}{\sqrt{25}}=1.1$
c. $z=\frac{36-35}{5.5 / \sqrt{25}}=0.91$
$p=0.1814$, found by $0.5000-0.3186$
d. $z=\frac{34.5-35}{5.5 / \sqrt{25}}=-0.45$
$p=0.6736$, found by $0.5000+0.1736$
e. 0.4922 , found by $0.3186+0.1736$
f. Sampling error of more than 1 hour corresponds to times of less than 34 or more than 36 hours. $z=\frac{34-35}{5.5 / \sqrt{25}}=-0.91$;
$z=\frac{36-35}{5.5 / \sqrt{25}}=0.91$. Subtracting: $0.5-.3186=.1814$ in
each tail. Multiplying by 2 , the final probability is .3628 .
33. $z=\frac{\$ 335-\$ 350}{\$ 45 / \sqrt{40}}=-2.11$
$p=0.9826$, found by $0.5000+0.4826$
35. $z=\frac{29.3-29}{2.5 / \sqrt{60}}=0.93$
$p=0.8238$, found by $0.5000+0.3238$
37. Between 5,954 and 6,046 , found by $6,000 \pm 1.96(150 / \sqrt{40})$
39. $z=\frac{900-947}{205 / \sqrt{60}}=-1.78$
$p=0.0375$, found by $0.5000-0.4625$
41. a. Alaska, Connecticut, Georgia, Kansas, Nebraska, South Carolina, Virginia, Utah
b. Arizona, Florida, lowa, Massachusetts, Nebraska, North Carolina, Rhode Island, Vermont
43. a. $z=\frac{600-510}{14.28 / \sqrt{10}}=19.9, P=0.00$, or virtually never
b. $z=\frac{500-510}{14.28 / \sqrt{10}}=-2.21$,
$p=0.4864+0.5000=0.9864$
c. $z=\frac{500-510}{14.28 / \sqrt{10}}=-2.21$,
$p=0.5000-0.4864=0.0136$
45. a. $\sigma_{\bar{x}}=\frac{2.1}{\sqrt{81}}=0.23$
b. $z=\frac{7.0-6.5}{2.1 / \sqrt{81}}=2.14, z=\frac{6.0-6.5}{2.1 / \sqrt{81}}=-2.14$,
$p=.4838+.4838=.9676$
c. $z=\frac{6.75-6.5}{2.1 / \sqrt{81}}=1.07, z=\frac{6.25-6.5}{2.1 / \sqrt{81}}=-1.07$,
$p=.3577+.3577=.7154$
d. . 0162 , found by $.5000-.4838$
47. Mean 2018 attendance was 2.322 million. Likelihood of a sample mean this large or larger is .1611 , found by $0.5000-.3389$,
where $z=\frac{2.322-2.45}{\frac{0.71}{\sqrt{30}}}=-0.99$.

CHAPTER 9

1. 51.314 and 58.686 , found by $55 \pm 2.58(10 / \sqrt{49})$
2. a. 1.581 , found by $\sigma_{\bar{x}}=25 / \sqrt{250}$
b. The population is normally distributed and the population variance is known. In addition, the Central Limit Theorem says that the sampling distribution of sample means will be normally distributed.
c. 16.901 and 23.099 , found by 20 ± 3.099
3. a. $\$ 20$. It is our best estimate of the population mean.
b. $\$ 18.60$ and $\$ 21.40$, found by $\$ 20 \pm 1.96(\$ 5 / \sqrt{49})$. About 95% of the intervals similarly constructed will include the population mean.
4. a. 8.60 gallons
b. 7.83 and 9.37 , found by $8.60 \pm 2.58(2.30 / \sqrt{60})$
c. If 100 such intervals were determined, the population mean would be included in about 99 intervals.
5. a. 2.201
b. 1.729
c. 3.499
6. a. The population mean is unknown, but the best estimate is 20, the sample mean.
b. Use the t-distribution since the standard deviation is unknown. However, assume the population is normally distributed.
c. 2.093
d. Margin of error $=2.093(2 / \sqrt{20})=0.94$
e. Between 19.06 and 20.94 , found by $20 \pm 2.093(2 / \sqrt{20})$
f. Neither value is reasonable because they are not inside the interval.
7. Between 95.39 and 101.81 , found by $98.6 \pm 1.833(5.54 / \sqrt{10})$
8. a. 0.8 , found by $80 / 100$
b. Between 0.72 and 0.88 , found by
$0.8 \pm 1.96\left(\sqrt{\frac{0.8(1-0.8)}{100}}\right)$
c. We are reasonably sure the population proportion is between 72 and 88%.
9. a. 0.625 , found by $250 / 400$
b. Between 0.563 and 0.687 , found by $0.625 \pm 2.58\left(\sqrt{\frac{0.625(1-0.625)}{400}}\right)$
c. We are reasonably sure the population proportion is between 56 and 69%. Because the estimated population proportion is more than 50%, the results indicate that Fox TV should schedule the new comedy show.
10. 97 , found by $n=\left(\frac{1.96 \times 10}{2}\right)^{2}=96.04$
11. 196, found by $n=0.15(0.85)\left(\frac{1.96}{0.05}\right)^{2}=195.9216$
12. 554 , found by $n=\left(\frac{1.96 \times 3}{0.25}\right)^{2}=553.19$
13. a. 577 , found by $n=0.60(0.40)\left(\frac{1.96}{0.04}\right)^{2}=576.24$
b. 601 , found by $n=0.50(0.50)\left(\frac{1.96}{0.04}\right)^{2}=600.25$
14. 33.41 and 36.59 , found by
$35 \pm 2.030\left(\frac{5}{\sqrt{36}}\right) \sqrt{\frac{300-36}{300-1}}$
15. 1.683 and 2.037 , found by
$1.86 \pm 2.680\left(\frac{0.5}{\sqrt{50}}\right) \sqrt{\frac{400-50}{400-1}}$
16. 6.13 years to 6.87 years, found by $6.5 \pm 1.989(1.7 / \sqrt{85})$
17. a. The sample mean, $\$ 1,147$, is the point estimate of the population mean.
b. The sample standard deviation, $\$ 50$, is the point estimate of the population standard deviation.
c. Margin of error $=2.426\left(\frac{50}{\sqrt{40}}\right)=19.18$
d. Between \$1,127.82 and 1,166.18, found by $1,147 \pm 2.426\left(\frac{50}{\sqrt{40}}\right) \cdot \$ 1,250$ is not reasonable because it is outside of the confidence interval.
18. a. The population mean is unknown. The point estimate of the population mean is the sample mean, 8.32 years.
b. Between 7.50 and 9.14 , found by $8.32 \pm 1.685(3.07 / \sqrt{40})$
c. 10 is not reasonable because it is outside the confidence interval.
19. a. 65.49 up to 71.71 hours, found by $68.6 \pm 2.680(8.2 / \sqrt{50})$
b. The value suggested by the NCAA is included in the confidence interval. Therefore, it is reasonable.
c. Changing the confidence interval to 95 would reduce the width of the interval. The value of 2.680 would change to 2.010 .
20. 61.47 , rounded to 62 . Found by solving for n in the equation: $1.96(16 / \sqrt{n})=4$
21. a. Between $52,461.11$ up to $57,640.77$ found by $55,051 \pm 1.711\left(\frac{7,568}{\sqrt{25}}\right)$
b. $\$ 55,000$ is reasonable because it is inside of the confidence interval.
22. a. 82.58 , found by $991 / 12$.
b. 3.94 is the sample standard deviation.
c. Margin of error $=1.796\left(\frac{3.94}{\sqrt{12}}\right)=2.04$
d. Between 80.54 and $\$ 84.62$, found by $82.58 \pm 1.796\left(\frac{3.94}{\sqrt{12}}\right)$
e. 80 is not reasonable because it is outside of the confidence interval.
23. a. 89.467 , found by $1342 / 15$, is the point estimate of the population mean.
b. Between 84.992 and 93.942 , found by $89.4667 \pm 2.145\left(\frac{8.08}{\sqrt{15}}\right)$
c. No, the stress level is higher because even the lower limit of the confidence interval is above 80.
24. a. $14 / 400=.035$, or 3.5%, is the point estimate of the population proportion.
b. Margin of error $=2.576\left(\sqrt{\frac{(0.035)(1-0.035)}{400}}\right)=.024$
c. The confidence interval is between 0.011 and 0.059 ; $0.035 \pm 2.576\left(\sqrt{\frac{(0.035)(1-0.035)}{400}}\right)$.
d. It would be reasonable to conclude that 5% of the employees are failing the test because 0.05 , or 5%, is inside the confidence interval.
25. a. Between 0.648 and 0.752 , found by

$$
.7 \pm 2.58\left(\sqrt{\frac{0.7(1-0.7)}{500}}\right)\left(\sqrt{\frac{20,000-500}{20,000-1}}\right)
$$

b. Based on this sample we would confirm Ms. Miller will receive a majority of the votes as the lower limit of the confidence interval is above 0.500 .
51. a. Margin of error $=2.032\left(\frac{4.50}{\sqrt{35}}\right) \sqrt{\frac{(500-35)}{500-1}}=\$ 1.49$
b. $\$ 52.51$ and $\$ 55.49$, found by
$\$ 54.00 \pm 2.032 \frac{\$ 4.50}{\sqrt{35}} \sqrt{\frac{(500-35)}{500-1}}$
53. 369, found by $n=0.60(1-0.60)(1.96 / 0.05)^{2}$
55. 97 , found by $[(1.96 \times 500) / 100]^{2}$
57. a. Between 7,849 and 8,151 , found by $8,000 \pm 2.756(300 / \sqrt{30})$
b. 554 , found by $n=\left(\frac{(1.96)(300)}{25}\right)^{2}$
59. a. Between 75.44 and 80.56 , found by $78 \pm 2.010(9 / \sqrt{50})$
b. 220 , found by $n=\left(\frac{(1.645)(9)}{1.0}\right)^{2}$
61. a. The point estimate of the population mean is the sample mean, \$650.
b. The point estimate of the population standard deviation is the sample standard deviation, \$24.
c. 4 , found by $24 / \sqrt{36}$
d. Between $\$ 641.88$ and $\$ 658.12$, found by $650 \pm 2.030\left(\frac{24}{\sqrt{36}}\right)$
e. 23 , found by $n=\{(1.96 \times 24) / 10\}^{2}=22.13$
63. a. 708.13 , rounded up to 709 , found by $0.21(1-0.21)(1.96 / 0.03)^{2}$
b. 1,068 , found by $0.50(0.50)(1.96 / 0.03)^{2}$
65. a. Between 0.156 and 0.184 , found by $0.17 \pm 1.96 \sqrt{\frac{(0.17)(1-0.17)}{2700}}$
b. Yes, because 18% are inside the confidence interval.
c. 21,682 ; found by $0.17(1-0.17)[1.96 / 0.005]^{2}$
67. Between 12.69 and 14.11 , found by $13.4 \pm 1.96(6.8 / \sqrt{352})$
69. a. Answers will vary.
b. Answers will vary.
c. Answers will vary.
d. Answers may vary.
e. Select a different sample of 20 homes and compute a confidence interval using the new sample. There is a 5% probability that a sample mean will be more than 1.96 standard errors from the mean. If this happens, the confidence interval will not include the population mean.
71. a. Between $\$ 4,033.1476$ and $\$ 5,070.6274$, found by $4,551.8875 \pm 518.7399$.
b. Between $71,040.0894$ and $84,877.1106$, found by $77,958.6000 \pm 6,918.5106$.
c. In general, the confidence intervals indicate that the average maintenance cost and the average odometer reading suggest an aging bus fleet.

CHAPTER 10

1. a. Two-tailed
b. Reject H_{0} when z does not fall in the region between -1.96 and 1.96 .
c. -1.2 , found by $z=(49-50) /(5 / \sqrt{36})=-1.2$
d. Fail to reject H_{0}.
e. Using the z-table, the p-value is .2302 , found by $2(.5000-$.3849). A 23.02\% chance of finding a z-value this large when H_{0} is true.
2. a. One-tailed
b. Reject H_{0} when $z>1.65$.
c. 1.2 , found by $z=(21-20) /(5 / \sqrt{36})$
d. Fail to reject H_{0} at the .05 significance level
e. Using the z-table, the p-value is .1151 , found by $.5000-.3849$. An 11.51% chance of finding a z-value this large or larger.
3. a. $H_{0}: \mu=60,000 \quad H_{1}: \mu \neq 60,000$
b. Reject H_{0} if $z<-1.96$ or $z>1.96$.
c. -0.69 , found by:

$$
z=\frac{59,500-60,000}{(5,000 / \sqrt{48})}
$$

d. Do not reject H_{0}.
e. Using the z-table, the p-value is .4902 , found by $2(.5000-$.2549). Crosset's experience is not different from that claimed by the manufacturer. If H_{0} is true, the probability of finding a value more extreme than this is .4902 .
7. a. $H_{0}: \mu \geq 6.8 \quad H_{1}: \mu<6.8$
b. Reject H_{0} if $z<-1.65$
c. $z=\frac{6.2-6.8}{1.8 / \sqrt{36}}=-2.0$
d. H_{0} is rejected.
e. Using the z-table, the p-value is 0.0228 . The mean number of DVDs watched is less than 6.8 per month. If H_{0} is true, you will get a statistic this small less than one time out of 40 tests.
9. a. Reject H_{0} when $t<1.833$
b. $t=\frac{12-10}{(3 / \sqrt{10})}=2.108$
c. Reject H_{0}. The mean is greater than 10 .
11. $H_{0}: \mu \leq 40 \quad H_{1}: \mu>40$

Reject H_{0} if $t>1.703$.

$$
t=\frac{42-40}{(2.1 / \sqrt{28})}=5.040
$$

Reject H_{0} and conclude that the mean number of calls is greater than 40 per week.
13. $H_{0}: \mu \leq 50,000 \quad H_{1}: \mu>50,000$ Reject H_{0} if $t>1.833$.

$$
t=\frac{(60000-50000)}{(10000 / \sqrt{10})}=3.16
$$

Reject H_{0} and conclude that the mean income in Wilmington is greater than \$50,000.
15. a. Reject H_{0} if $t<-3.747$.
b. $\bar{x}=17$ and $s=\sqrt{\frac{50}{5-1}}=3.536$

$$
t=\frac{17-20}{(3.536 / \sqrt{5})}=-1.90
$$

c. Do not reject H_{0}. We cannot conclude the population mean is less than 20.
d. Using a p-value calculator or statistical software, the p-value is .0653 .
17. $H_{0}: \mu \leq 1.4 \quad H_{1}: \mu>1.4$

Reject H_{0} if $t>2.821$.

$$
t=\frac{1.6-1.4}{0.216 / \sqrt{10}}=2.93
$$

Reject H_{0} and conclude that the water consumption has increased. Using a p-value calculator or statistical software, the p-value is .0084 . There is a slight probability that the sampling error, .2 liters, could occur by chance.
19. $H_{0}: \mu \leq 67 \quad H_{1}: \mu>67$

Reject H_{0} if $t>1.796$

$$
t=\frac{(82.5-67)}{(59.5 / \sqrt{12})}=0.902
$$

Fail to reject H_{0} and conclude that the mean number of text messages is not greater than 67. Using a p-value calculator or statistical software, the p-value is .1932 . There is a good probability (about 19\%) this could happen by chance.
21. 1.05 , found by $z=(9,992-9,880) /(400 / \sqrt{100})$. Then $0.5000-$ $0.3531=0.1469$, which is the probability of a Type II error.
23. $H_{0}: \mu \geq 60 \quad H_{1}: \mu<60$

Reject H_{0} if $z<-1.282$; the critical value is 59.29.

$$
z=\frac{58-60}{(2.7 / \sqrt{24})}=-3.629
$$

Reject H_{0}. The mean assembly time is less than 60 minutes. Using the sample mean, 58 , as μ_{1}, the z-score for 59.29 is 2.34 . So the probability for values between 58 and 59.29 is .4904. The Type II error is the area to the right of 59.29 or $.5000-.4904=.0096$.
25. $H_{0}: \mu=\$ 45,000 \quad H_{1}: \mu \neq \$ 45,000$

Reject H_{0} if $z<-1.65$ or $z>1.65$.

$$
z=\frac{\$ 45,500-\$ 45,000}{\$ 3000 / \sqrt{120}}=1.83
$$

Using the z-table, the p-value is 0.0672 , found by $2(0.5000$ - 0.4664).

Reject H_{0}. We can conclude that the mean salary is not $\$ 45,000$.
27. $H_{0}: \mu \geq 10 \quad H_{1}: \mu<10$

Reject H_{0} if $z<-1.65$.

$$
z=\frac{9.0-10.0}{2.8 / \sqrt{50}}=-2.53
$$

Using the z-table, p-value $=0.5000-0.4943=0.0057$
Reject H_{0}. The mean weight loss is less than 10 pounds.
29. $H_{0}: \mu \geq 7.0 \quad H_{1}: \mu<7.0$

Assuming a 5% significance level, reject H_{0} if $t<-1.677$.

$$
t=\frac{6.8-7.0}{0.9 / \sqrt{50}}=-1.57
$$

Using a p-value calculator or statistical software, the p-value is 0.0614 .
Do not reject H_{0}. West Virginia students are not sleeping less than 6 hours.
31. $H_{0}: \mu \geq 3.13 \quad H_{1}: \mu<3.13$

Reject H_{0} if $t<-1.711$

$$
t=\frac{2.86-3.13}{1.20 / \sqrt{25}}=-1.13
$$

We fail to reject H_{0} and conclude that the mean number of residents is not necessarily less than 3.13.
33. $H_{0}: \mu \leq \$ 6,658 \quad H_{1}: \mu>\$ 6,658$

Reject H_{0} if $t>1.796$
$\bar{x}=\frac{85,963}{12}=7,163.58 \quad s=\sqrt{\frac{9,768,674.92}{12-1}}=942.37$
$t=\frac{7163.58-6,658}{942.37 / \sqrt{12}}=1.858$
Reject H_{0}. First, the test statistic (1.858) is more than the critical value, 1.796. Second, using a p-value calculator or statistical software, the p-value is .0451 and less than the significance level, .05 . We conclude that rhe mean interest paid is greater than $\$ 6,658$.
35. $H_{0}: \mu=3.1 \quad H_{1}: \mu \neq 3.1$ Assume a normal population. Reject H_{0} if $t<-2.201$ or $t>2.201$.

$$
\begin{aligned}
& \bar{x}=\frac{41.1}{12}=3.425 \\
& s=\sqrt{\frac{4.0625}{12-1}}=.6077 \\
& t=\frac{3.425-3.1}{.6077 / \sqrt{12}}=1.853
\end{aligned}
$$

Using a p-value calculator or statistical software, the p-value is 0910 .
Do not reject H_{0}. Cannot show a difference between senior citizens and the national average.
37. $H_{0}: \mu \geq 6.5 \quad H_{1}: \mu<6.5$ Assume a normal population. Reject H_{0} if $t<-2.718$.
$\bar{x}=5.1667 \quad s=3.1575$

$$
t=\frac{5.1667-6.5}{3.1575 / \sqrt{12}}=-1.463
$$

Using a p-value calculator or statistical software, the p-value is .0861 .
Do not reject H_{0}.
39. $H_{0}: \mu=0 \quad H_{1}: \mu \neq 0$

Reject H_{0} if $t<-2.110$ or $t>2.110$
$\bar{x}=-0.2322 \quad s=0.3120$

$$
t=\frac{-0.2322-0}{0.3120 / \sqrt{18}}=-3.158
$$

Using a p-value calculator or statistical software, the p-value is .0057 .
Reject H_{0}. The mean gain or loss does not equal 0 .
41. $H_{0}: \mu \leq 100 \quad H_{1}: \mu>100$ Assume a normal population. Reject H_{0} if $t>1.761$.

$$
\begin{aligned}
\bar{x} & =\frac{1,641}{15}=109.4 \\
s & =\sqrt{\frac{1,389.6}{15-1}}=9.9628 \\
t & =\frac{109.4-100}{9.9628 / \sqrt{15}}=3.654
\end{aligned}
$$

Using a p-value calculator or statistical software, the p-value is .0013 .
Reject H_{0}. The mean number with the scanner is greater than 100 .
43. $\quad H_{0}: \mu=1.5 \quad H_{1}: \mu \neq 1.5$

Reject H_{0} if $t>3.250$ or $t<-3.250$

$$
t=\frac{1.3-1.5}{0.9 / \sqrt{10}}=-0.703
$$

Using a p-value calculator or statistical software, the p-value is .4998.
Fail to reject H_{0}.
45. $H_{0}: \mu \geq 30 \quad H_{1}: \mu<30$

Reject H_{0} if $t<-1.895$.

$$
\begin{aligned}
& \bar{x}=\frac{238.3}{8}=29.7875 \quad s=\sqrt{\frac{5.889}{8-1}}=0.9172 \\
& t=\frac{29.7875-30}{0.9172 / \sqrt{8}}=-0.655
\end{aligned}
$$

Using a p-value calculator or statistical software, the p-value is 2667 .
Do not reject H_{0}. The cost is not less than $\$ 30,000$.
47. a. $9.00 \pm 1.645(1 / \sqrt{36})=9.00 \pm 0.274$.

So the limits are 8.726 and 9.274 .
b. $z=\frac{8.726-8.6}{1 / \sqrt{36}}=0.756$.
$P(z<0.756)=0.5000+0.2764=.7764$
c. $z=\frac{9.274-9.6}{1 / \sqrt{36}}=-1.956$.

$$
P(z>-1.96)=0.4750+0.5000=.9750
$$

49. $50+2.33 \frac{10}{\sqrt{n}}=55-.525 \frac{10}{\sqrt{n}} \quad n=(5.71)^{2}=32.6$

Let $n=33$
51. $H_{0}: \mu \geq 8 \quad H_{1}: \mu<8$

Reject H_{0} if $t<-1.714$.

$$
t=\frac{7.5-8}{3.2 / \sqrt{24}}=-0.77
$$

Using a p-value calculator or statistical software, the p-value is .2246 .
Do not reject the null hypothesis. The time is not less.
53. a. $H_{0}: \mu=100 \quad H_{1}: \mu \neq 100$

Reject H_{0} if t is not between -2.045 and 2.045 .
$t=\frac{139.17-100}{41.1 / \sqrt{30}}=5.22$
Using a p-value calculator or statistical software, the p-value is .000014 .
Reject the null. The mean salary is probably not $\$ 100.0$ million.
b. $H_{0}: \mu \leq 2,000,000 \quad H_{1}: \mu>2,000,000$

Reject H_{0} if t is >1.699.

$$
t=\frac{2.3224-2.0}{.7420 / \sqrt{30}}=2.38
$$

Using a p-value calculator or statistical software, p-value is .0121 . Reject the null. The mean attendance was more than 2,000,000.

CHAPTER 11

1. a. Two-tailed test
b. Reject H_{0} if $z<-2.05$ or $z>2.05$
c. $z=\frac{102-99}{\sqrt{\frac{5^{2}}{40}+\frac{6^{2}}{50}}}=2.59$
d. Reject H_{0}.
e. Using the z-table, the p-value is $=.0096$, found by $2(.5000$ -.4952).
2. Step $1 H_{0}: \mu_{1} \geq \mu_{2} \quad H_{1}: \mu_{1}<\mu_{2}$

Step 2 The . 05 significance level was chosen.
Step 3 Reject H_{0} if $z<-1.65$.
Step $4-0.94$, found by:

$$
z=\frac{7.6-8.1}{\sqrt{\frac{(2.3)^{2}}{40}}+\frac{(2.9)^{2}}{55}}=-0.94
$$

Step 5 Fail to reject H_{0}
Step 6 Babies using the Gibbs brand did not gain less weight. Using the z-table, the p-value is $=.1736$, found by $.5000-.3264$.
5. Step $1 H_{0}: \mu_{\text {married }}=\mu_{\text {unmarried }} \quad H_{1}: \mu_{\text {married }} \neq \mu_{\text {unmarried }}$

Step 2 The 0.05 significance level was chosen.
Step 3 Use a z-statistic as both population standard deviations are known.
Step 4 If $z<-1.960$ or $z>1.960$, reject H_{0}
Step $5 \quad z=\frac{4.0-4.4}{\sqrt{\frac{(1.2)^{2}}{45}+\frac{(1.1)^{2}}{39}}}=-1.59$
Fail to reject the null.
Step 6 It is reasonable to conclude that the time that married and unmarried women spend each week is not significantly different. Using the z-table, the p-value is $\mathbf{1 1 4 2 \text { . The difference }}$ of 0.4 hour per week could be explained by sampling error.
7. a. Reject H_{0} if $t>2.120$ or $t<-2.120$. df $=10+8-2=16$.
b. $s_{p}^{2}=\frac{(10-1)(4)^{2}+(8-1)(5)^{2}}{10+8-2}=19.9375$
c. $t=\frac{23-26}{\sqrt{19.9375\left(\frac{1}{10}+\frac{1}{8}\right)}}=-1.416$
d. Do not reject H_{0}
e. Using a p-value calculator or statistical software, the p-value is .1759 . From the t-table we estimate the p-value is greater than 0.10 and less than 0.20 .
9. Step $1 H_{0}: \mu_{\text {Pitchers }}=\mu_{\text {Position Players }}$

Step 2 The 0.01 significance level was chosen.
Step 3 Use a t-statistic assuming a pooled variance with the standard deviation unknown.
Step $4 d f=20+16-2=34$ Reject H_{0} if t is not between -2.728 and 2.728 .

$$
\begin{aligned}
& s_{p}^{2}=\frac{(20-1)(8.218)^{2}+(16-1)(6.002)^{2}}{20+16+2}=53.633 \\
& t=\frac{4.953-4.306}{\sqrt{53.633\left(\frac{1}{20}+\frac{1}{16}\right)}}=.2634
\end{aligned}
$$

Using a p-value calculator or statistical software, the p-value is .7938 .
Step 5 Do not reject H_{0}.
Step 6 There is no difference in the mean salaries of pitchers and position players.
11. Step $1 H_{0}: \mu_{s} \leq \mu_{a} \quad H_{1}: \mu_{s}>\mu_{a}$

Step 2 The .10 significance level was chosen.
Step $3 d f=6+7-2=11$
Reject H_{0} if $t>1.363$.
Step $4 s_{p}^{2}=\frac{(6-1)(12.2)^{2}+(7-1)(15.8)^{2}}{6+7-2}=203.82$
$t=\frac{142.5-130.3}{\sqrt{203.82\left(\frac{1}{6}+\frac{1}{7}\right)}}=1.536$
Step 5 Using a p-value calculator or statistical software, the p-value is 0.0763 . Reject H_{0}.
Step 6 The mean daily expenses are greater for the sales staff.
13. a. $d f=\frac{\left(\frac{25}{15}+\frac{225}{12}\right)^{2}}{\frac{\left(\frac{25}{15}\right)^{2}}{15-1}+\frac{\left(\frac{225}{12}\right)^{2}}{12-1}}=\frac{416.84}{0.1984+31.9602}$

$$
=12.96 \rightarrow 12 d f
$$

b. $H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1} \neq \mu_{2}$ Reject H_{0} if $t>2.179$ or $t<-2.179$.
c. $t=\frac{50-46}{\sqrt{\frac{25}{15}+\frac{225}{12}}}=0.8852$
d. Fail to reject the null hypothesis.
15.
$d f=\frac{\left(\frac{697,225}{16}+\frac{2,387,025}{18}\right)^{2}}{\frac{\left(\frac{697,225}{16}\right)^{2}}{16-1}+\frac{\left(\frac{2,387,025}{18}\right)^{2}}{18-1}}=26.7 \rightarrow 26 d f$
b. $H_{0}: \mu_{\text {Private }} \leq \mu_{\text {Public }} \quad H_{1}: \mu_{\text {Private }}>\mu_{\text {Public }}$

Reject H_{0} if $t>1.706$.
c. $t=\frac{12,840-11,045}{\sqrt{\frac{2,387,025}{18}}+\frac{697,225}{16}}=4.276$
d. Reject the null hypothesis. The mean adoption cost from a private agency is greater than the mean adoption cost from a public agency.
17. Reject H_{0} if $t>2.353$.
a. $\bar{d}=\frac{12}{4}=3.00$

$$
\begin{aligned}
& s_{d}=\sqrt{\frac{(2-3)^{2}+(3-3)^{2}+(3-3)^{2}+(4-3)^{2}}{4-1}}=0.816 \\
& t=\frac{3}{0.816 / \sqrt{4}}=7.353
\end{aligned}
$$

Using a p-value calculator or statistical software, the p-value is .0026 .
b. Reject the H_{0}. The test statistic is greater than the critical value. The p-value is less than . 05.
c. There are more defective parts produced on the day shift
19. a. Step 1: $H_{0}: \mu_{d} \geq 0 \quad H_{1}: \mu_{d}<0$

Step 2: The 0.05 significance level was chosen
Step 3: Use a t-statistic with the standard deviation unknown for a paired sample.
Step 4: Reject H_{0} if $t<-1.796$.
b. Step 5: $\bar{d}=-25.917$

$$
s_{d}=40.791 \quad t=\frac{-25.917}{40.791 / \sqrt{12}}=-2.201
$$

Using a p-value calculator or statistical software, the p-value is .0250 .
c. Reject H_{0}. The test statistic is greater than the critical value. The p-value is less than .05
d. Step 6: The incentive plan resulted in an increase in daily income.
21. a. $H_{0}=\mu_{\text {Men }}=\mu_{\text {Women }} \quad H_{1}: \mu_{\text {Men }} \neq \mu_{\text {women }}$

Reject H_{0} if $t<-2.645$ or $t>2.645$.
b. $s_{p}^{2}=\frac{(35-1)(4.48)^{2}+(40-1)(3.86)^{2}}{35+40-2}=17.31$

$$
t=\frac{24.51-22.69}{\sqrt{17.31\left(\frac{1}{35}+\frac{1}{40}\right)}}=1.890
$$

c. Using a p-value calculator or statistical software, the p-value is .0627 .
d. Do not reject the null hypothesis. The test statistic is less than the critical value. The p-value is more than . 01.
e. There is no difference in the means.
23.
a. $H_{0}: \mu_{\text {Clark }}=\mu_{\text {Murnen }} ; \quad H_{1}: \mu_{\text {Clark }} \neq \mu_{\text {Murnen }}$ Reject H_{0} if $z<-1.96$ or $z>1.96$.
b. $z=\frac{4.77-5.02}{\sqrt{\frac{(1.05)^{2}}{40}+\frac{(1.23)^{2}}{50}}}=-1.04$
c. Using a z-table or a p-value calculator or statistical software, the p-value is .2983
d. H_{0} is not rejected. The test statistic is less than the critical value. The p-value is more than .05
e. There is no difference in the mean number of calls.
25. a. $H_{0}: \mu_{A} \geq \mu_{B} \quad H_{1}: \mu_{A}<\mu_{B}$

Reject H_{0} if $t<-1.668$
b. $\mathrm{df}=67$, found by $\frac{\left(9200^{2} / 40+7100^{2} / 30\right)^{2}}{\frac{\left(9200^{2} / 40\right)^{2}}{39}+\frac{\left(7100^{2} / 30\right)^{2}}{29}}=67.9$

$$
t=\frac{57000-61000}{\sqrt{\frac{9200^{2}}{40}+\frac{7100^{2}}{30}}}=-2.053
$$

c. Using a p-value calculator or statistical software, the p-value is .0220 .
d. Reject H_{0}. The test statistic is less than the critical value. Reject H_{0} if $t<-1.668$. The p-value is less than .05 .
e. The mean income of those selecting Plan B is larger.
27. a. $H_{0}: \mu_{\text {Apple }}=\mu_{\text {Spotify }} \quad H_{1}: \mu_{\text {Apple }} \neq \mu_{\text {Spotify }}$ Reject H_{0} if $t<-2.120$ or $t>2.120$.
b. $d f=16$, found by $\frac{\left(0.56^{2} / 12+0.3^{2} / 12\right)^{2}}{\frac{\left(0.56^{2} / 12\right)^{2}}{11}+\frac{\left(0.3^{2} / 12\right)^{2}}{11}}=16.8$

$$
t=\frac{1.65-2.2}{\sqrt{\frac{0.56^{2}}{12}+\frac{0.3^{2}}{12}}}=-2.999
$$

c. Using a p-value calculator or statistical software, the p-value is .0085 .
d. Reject H_{0}. The test statistic is outside the interval. The p-value is less than 05.
e. The number of average monthly households using Apple Music and Spotify differ.
29. a. $H_{0}: \mu_{\mathrm{n}}=\mu_{\mathrm{s}} \quad H_{1}: \mu_{\mathrm{n}} \neq \mu_{\mathrm{s}}$;

Reject H_{0} if $t<-2.093$ or $t>2.093$.
b. $\mathrm{df}=19$, found by $\frac{\left(10.5^{2} / 10+{ }^{14.25^{2}} / 12\right)^{2}}{\frac{\left(10.5^{2} / 10\right)^{2}}{9}+\frac{\left(14.25^{2} / 12\right)^{2}}{11}}=19.8$

$$
t=\frac{83.55-78.8}{\sqrt{\frac{10.5^{2}}{10}+\frac{14.25^{2}}{12}}}=0.899
$$

c. Using a p-value calculator or statistical software, the p-value is 3799 .
d. Do not reject H_{0}. The test statistic is inside the interval. The p-value is large and greater than .05 .
e. There is no difference in the mean number of hamburgers sold at the two locations
31. a. $H_{0}: \mu_{\text {Peach }}=\mu_{\text {plum }} \quad H_{1}: \mu_{\text {Peach }} \neq \mu_{\text {Plum }}$

$$
\text { Reject } H_{0} \text { if } t<-2.845 \text { or } t>2.845
$$

b. df $=20$, found by $\frac{\left(2.33^{2} / 10+{ }^{2.55^{2}} / 14\right)^{2}}{\frac{\left(2.33^{2} / 10\right)^{2}}{9}+\frac{\left(2.55^{2} / 14\right)^{2}}{13}}=20.6$

$$
t=\frac{15.87-18.29}{\sqrt{\frac{2.33^{2}}{10}+\frac{2.55^{2}}{14}}}=-2.411
$$

c. Using a p-value calculator or statistical software, the p-value is .0256 .
d. Do not reject H_{0}. The test statistic is inside the interval. The p-value is more than . 01
e. There is no difference in the mean amount purchased at the 1% level of significance.
33. a. $H_{0}: \mu_{\text {Under } 25} \leq \mu_{\text {Over } 65} \quad H_{1}: \mu_{\text {Under } 25}>\mu_{\text {Over } 65}$; Reject H_{0} if $t>2.602$
b. $\mathrm{df}=15$, found by $\frac{\left(2.264^{2} / 8+2.461^{2} / 11\right)^{2}}{\frac{\left(2.264^{2} / 8\right)^{2}}{7}+\frac{\left(2.461^{2} / 11\right)^{2}}{10}}=15.953$ $t=\frac{10.375-5.636}{\sqrt{\frac{2.264^{2}}{8}+\frac{2.461^{2}}{11}}}=4.342$
c. Using a p-value calculator or statistical software, the p-value is .0003 .
d. Reject H_{0}. The test statistic is greater than the critical value. The p-value is less than . 01.
e. Customers who are under 25 years of age use ATMs more than customers who are over 60 years of age.
35. a. $H_{0}: \mu_{\text {Reduced }} \leq \mu_{\text {Regular }} \quad H_{1}: \mu_{\text {Reduced }}>\mu_{\text {Regular }}$ Reject H_{0} if $t>2.650$.
b. $\bar{X}_{1}=125.125 \quad s_{1}=15.094 \quad \bar{X}_{2}=117.714 \quad s_{2}=19.914$ $s_{p}^{2}=\frac{(8-1)(15.094)^{2}+(7-1)(19.914)^{2}}{8+7-2}=305.708$ $t=\frac{125.125-117.714}{\sqrt{305.708\left(\frac{1}{8}+\frac{1}{7}\right)}}=0.819$
c. Using a p-value calculator or statistical software, the p-value is .2133
d. Do not reject H_{0}. The test statistic is inside the interval. The p-value is more than . 01
e. The sample data does not provide evidence that the reduced price increased sales.
37. a. $H_{0}: \mu_{\text {Before }}-\mu_{\text {After }}=\mu_{d} \leq 0 \quad H_{1}: \mu_{d}>0$ Reject H_{0} if $t>1.895$.
b. $\bar{d}=1.75 \quad s_{d}=2.9155 \quad t=\frac{1.75}{2.9155 / \sqrt{8}}=1.698$
c. Using a p-value calculator or statistical software, the p-value is .0667 .
d. Do not reject H_{0}. The test statistic is less than the critical value. The p-value is greater than . 05 .
e. We fail to find evidence the change reduced absences
39. a. $H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1} \neq \mu_{2}$

Reject H_{0} if $t<-2.024$ or $t>2.024$.
b. $s_{p}^{2}=\frac{(15-1)(40000)^{2}+(25-1)(30000)^{2}}{15+25-2}=1,157,894,737$
$t=\frac{150000-180000}{\sqrt{1,157,894,737\left(\frac{1}{15}+\frac{1}{25}\right)}}=-2.699$
c. Using a p-value calculator or statistical software, the p-value is .0103.
d. Reject H_{0}. The test statistic is outside the interval. The p-value is less than 05.
e. The data indicates that the population means are different.
41.
a. $H_{0}: \mu_{\text {Before }}-\mu_{\text {After }}=\mu_{\mathrm{d}} \leq 0 \quad H_{1}: \mu_{\mathrm{d}}>0$ Reject H_{0} if $t>1.895$.
b. $\bar{d}=3.113 \quad s_{d}=2.911 \quad t=\frac{3.113}{2.911 / \sqrt{8}}=3.025$
c. Using a p-value calculator or statistical software, the p-value is .0096.
d. Reject H_{0}. The test statistic is outside the interval. The p-value is less than . 05 .
e. We find evidence the average contamination is lower after the new soap is used.
43. a. $H_{0}: \mu_{\text {Ocean Drive }}=\mu_{\text {Rio Rancho }} ; \quad H_{1}: \mu_{\text {Ocean Drive }} \neq \mu_{\text {Rio Rancho }}$ Reject H_{0} if $t<-2.008$ or $t>2.008$.
b. $s_{p}^{2}=\frac{(25-1)(23.43)^{2}+(28-1)(24.12)^{2}}{25+28-2}=566$ $t=\frac{86.2-92.0}{\sqrt{566\left(\frac{1}{25}+\frac{1}{28}\right)}}=-0.886$
c. Using a p-value calculator or statistical software, the p-value is .3798 .
d. Do not reject H_{0}. The test statistic is inside the interval. The p-value is more than .05
e. It is reasonable to conclude there is no difference in the mean number of cars in the two lots.
45. a. $H_{0}: \mu_{\mathrm{US} 17}-\mu_{\mathrm{SC} 707}=\mu_{\mathrm{d}} \leq 0 \quad H_{1}: \mu_{\mathrm{d}}>0$ Reject H_{0} if $t>1.711$.
b. $\bar{d}=2.8 \quad s_{d}=6.589 \quad t=\frac{2.8}{6.589 / \sqrt{25}}=2.125$
c. Using a p-value calculator or statistical software, the p-value is .0220 .
d. Reject H_{0}. The test statistic is greater than the test statistic. The p-value is less than . 05
e. On average, there are more cars in the US 17 lot.
47. a. Using statistical software, the result is that we fail to reject the null hypothesis that the mean prices of homes with and without pools are equal. Assuming equal population variances, the p-value is 0.4908 .
b. Using statistical software, the result is that we reject the null hypothesis that the mean prices of homes with and without garages are equal. There is a large difference in mean prices between homes with and without garages. Assuming equal population variances, the p-value is less than 0.0001 .
c. Using statistical software, the result is that we fail to reject the null hypothesis that the mean prices of homes are equal with mortgages in default and not in default. Assuming equal population variances, the p-value is 0.6980 .
49. Using statistical software, the result is that we reject the nul hypothesis that the mean maintenance cost of buses powered by diesel and gasoline engines is the same. Assuming equal population variances, the p-value is less than 0.0001 .

CHAPTER 12

1. a. 9.01, from Appendix B. 6
2. Reject H_{0} if $F>10.5$, where degrees of freedom in the numerator are 7 and 5 in the denominator. Computed $F=2.04$, found by:

$$
F=\frac{s_{1}^{2}}{s_{2}^{2}}=\frac{(10)^{2}}{(7)^{2}}=2.04
$$

Do not reject H_{0}. There is no difference in the variations of the two populations.
5. a. $H_{0}: \sigma_{1}^{2}=\sigma_{2}^{2} \quad H_{1}: \sigma_{1}^{2} \neq \sigma_{2}^{2}$
b. $d f$ in numerator are 11 and 9 in the denominator Reject H_{0} where $F>3.10$ (3.10 is about halfway between 3.14 and 3.07)
c. $F=1.44$, found by $F=\frac{(12)^{2}}{(10)^{2}}=1.44$
d. Using a p-value calculator or statistical software, the p-value is .2964 .
e. Do not reject H_{0}
f. It is reasonable to conclude variations of the two populations could be the same.
7. a. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3} ; H_{1}$: Treatment means are not all the same. b. Reject H_{0} if $F>4.26$.
c\&d.

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Treatment	62.17	2	31.08	21.94
Error	$\frac{12.75}{74.92}$	$\frac{9}{11}$	1.42	
\quad Total				

e. Reject H_{0}. The treatment means are not all the same.
9. a. $H_{0}: \mu_{\text {Southwyck }}=\mu_{\text {Franklin }}=\mu_{\text {old Orchard }} \quad H_{1}$: Treatment means are not all the same.
b. Reject H_{0} if $F>4.26$.
c.

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Treatment	276.50	2	138.25	14.18
Error	87.75	9	9.75	

d. Using a p-value calculator or statistical software, the p-value is .0017.
e. Reject H_{0}. The test statistic is greater than the critical value. The p-value is less than . 05.
f. The mean incomes are not all the same for the three tracks of land.
11. a. $H o: \mu_{1}=\mu_{2}=\mu_{3} \quad H_{1}$: Treatment means are not all the same.
b. Reject H_{0} if $F>4.26$.
c. $\mathrm{SST}=107.20 \quad \mathrm{SSE}=9.47 \quad \mathrm{SS}$ total $=116.67$
d. Using Excel,

ANOVA						
Source of						
Variation	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}	\boldsymbol{P}-value	\boldsymbol{F} crit
Treatment	107.2000	2	53.6000	50.9577	0.0000	4.2565
Error	$\frac{9.4667}{}$	$\frac{9}{1.0519}$	1.05			
\quad Total	116.6667	11				

e. Since $50.96>4.26, H_{0}$ is rejected. At least one of the means differ.
f. $\left(\bar{X}_{1}-\bar{X}_{2}\right) \pm t \sqrt{\operatorname{MSE}\left(1 / n_{1}+1 / n_{2}\right)}$ $(9.667-2.20) \pm 2.262 \sqrt{1.052(1 / 3+1 / 5)}$ 7.467 ± 1.69
[5.777, 9.157] Yes, we can conclude that treatments 1 and 2 have different means.
13. a. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} H_{1}$: Treatment means are not all equal. Reject H_{0} if $F>3.71$.
b. The F-test statistic is 2.36 .
c. The p-value is .133 .
d. H_{0} is not rejected. The test statistic, 2.36 is less than the critical value, 3.71. The p-value is more than 05 .
e. There is no difference in the mean number of weeks.
15. a. $H_{0}: \mu_{1}=\mu_{2} \quad H_{1}$: Not all treatment means are equal.
b. Reject H_{0} if $F>18.5$.
c. $H_{0}: \mu_{A}=\mu_{B}=\mu_{C} \quad H_{1}$: Not all block means are equal Reject H_{0} if $F>19.0$
d. SSTotal $=(46.0-36.5)^{2}+\cdots(35.0-36.5)^{2}=289.5$
$S S T=3\left((42.33-219 / 6)^{2}\right)+3\left((30.67-219 / 6)^{2}\right)$
$=204.167$
$S S B=2\left((38.5-219 / 6)^{2}\right)+2\left((31.5-219 / 6)^{2}\right)+$ $2\left((39.5-219 / 6)^{2}\right)=76.00$
SSE = SSTotal - SST - SSB $=289.5-204.1667-76$
$=9.333$

e. | Source | SS | $\boldsymbol{d f}$ | MS | \boldsymbol{F} | \boldsymbol{p}-value |
| :--- | ---: | :--- | ---: | ---: | ---: |
| Treatment | 204.167 | 1 | 204.167 | 43.75 | 0.0221 |
| Blocks | 76.000 | 2 | 38.000 | 8.14 | 0.1094 |
| Error | $\frac{9.333}{}$ | $\frac{2}{2}$ | 4.667 | | |
| Total | 289.5000 | 5 | | | |

f. The F-statistic is significant: $43.75>18.5 ; p$-value is less then .05 . so reject H_{0}. There is a difference in the treatment means: $8.14<19.0$. For the blocks, $8.14<19.0 ; p$-value is more than .05 , so fail to reject H_{0} for blocks. There is no difference between blocks.
17. a. For treatment
$H_{0}: \mu_{\text {Day }}=\mu_{\text {Atternoon }}=\mu_{\text {Night }}$
$H_{1}:$ Not all means equal
$H_{1}:$ Not all means
b. Reject if $F>4.46$.
c. For blocks: $H_{0}: \mu_{S}=\mu_{L}=\mu_{C}=\mu_{T}=\mu_{M} \quad H_{1}$: Not all means are equal. Reject if $F>3.84$.
d. SSTotal $=(31-433 / 15)^{2}+\cdots+(27-433 / 15)^{2}=139.73$
$\operatorname{SST}=5\left((30-433 / 15)^{2}\right)+5\left((26-433 / 15)^{2}\right)$
$+5\left(\left(30.6-{ }^{433} / 15\right)^{2}\right)=62.53$
$S S B=3\left((30.33-433 / 15)^{2}\right)+3\left((30.67-433 / 15)^{2}\right)$
$+3\left((27.3-433 / 15)^{2}\right)+3\left((29-433 / 15)^{2}\right)$
$+3\left(\left(27-{ }^{433} / 15\right)^{2}\right)=33.73$
SSE $=($ SSTotal - SST - SSB $)=139.73-62.53-33.73$
$=43.47$
e. Here is the ANOVA table:

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}	\boldsymbol{p}-value
Treatment	62.53	2	31.2667	5.75	.0283
Blocks	33.73	4	8.4333	1.55	.2767
Error	$\frac{43.47}{}$	$\underline{8}$	5.4333		
Total	$\mathbf{1 3 9 . 7 3}$	$\mathbf{1 4}$			

f. As $5.75>4.46$ the null for treatments is rejected, but the null for blocks is not rejected as $1.55<3.84$. There is a difference in means by shifts, but not by employee.
19.

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}	\boldsymbol{P}
Size	156.333	2	78.1667	1.98	0.180
Weight	98.000	1	98.000	2.48	0.141
Interaction	36.333	2	18.1667	0.46	0.642
Error	473.333	$\frac{12}{}$	39.444		
\quad Total	$\mathbf{7 6 4 . 0 0 0}$	$\frac{17}{17}$			

a. Since the p-value (0.18) is greater than 0.05 , there is no difference in the Size means.
b. The p-value for Weight (0.141) is also greater than 0.05 . Thus, there is no difference in those means.
c. There is no significant interaction because the p-value (0.642) is greater than 0.05 .
21. a.

Yes, there appears to be an interaction effect. Sales are different based on machine position, either in the inside or outside position.

Two-way ANOVA: Sales versus Position, Machine					
Source	$\boldsymbol{d f}$	SS	MS	\boldsymbol{F}	\boldsymbol{P}
Position	1	104.167	104.167	9.12	0.007
Machine	2	16.333	8.167	0.72	0.502
Interaction	2	457.333	228.667	20.03	0.000
Error	$\underline{18}$	$\underline{205.500}$	11.417		
\quad Total	23	783.333			

The position and the interaction of position and machine effects are significant. The effect of machine on sales is not significant.
c.

One-way ANOVA: D-320 Sales versus Position					
Source	df	SS	MS	F	P
Position	1	364.50	364.50	40.88	0.001
Error	6	53.50	8.92		
Total	7	418.00			
One-way ANOVA: J-1000 Sales versus Position					
Source	df	SS	MS	F	P
Position	1	84.5	84.5	5.83	0.052
Error	6	87.0	14.5		
Total	7	171.5			
One-way ANOVA: UV-57 Sales versus Position					
Source	df	SS	MS	F	P
Position	1	112.5	112.5	10.38	0.018
Error	6	65.0	10.8		
Total	7	177.5			

Recommendations using the statistical results and mean sales plotted in part (a): Position the D-320 machine outside. Statistically, the position of the J-1000 does not matter. Position the UV-57 machine inside.
23. $H_{0}: \sigma_{1}^{2} \leq \sigma_{2}^{2} ; H_{1}: \sigma_{1}^{2}>\sigma_{2}^{2} . d f_{1}=21-1=20$;
$d f_{2}=18-1=17 . H_{0}$ is rejected if $F>3.16$

$$
F=\frac{(45,600)^{2}}{(21,330)^{2}}=4.57
$$

Reject H_{0}. There is more variation in the selling price of oceanfront homes.
25. Sharkey: $n=7 \quad s_{s}=14.79$

White: $n=8 \quad s_{w}=22.95$
$H_{0}: \sigma_{w}^{2} \leq \sigma_{s}^{2} ; H_{1}: \sigma_{w}^{2}>\sigma_{s}^{2} . d f_{s}=7-1=6$
$d f_{w}=8-1=7$. Reject H_{0} if $F>8.26$.

$$
F=\frac{(22.95)^{2}}{(14.79)^{2}}=2.41
$$

Cannot reject H_{0}. There is no difference in the variation of the monthly sales.
27. a. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{1} : Treatment means are not all equal.
b. $\alpha=.05 \quad$ Reject H_{0} if $F>3.10$.

cource	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Treatment	50	$4-1=3$	$50 / 3$	1.67
Error	$\frac{200}{250}$	$\frac{24-4=20}{24-1=23}$	10	
\quad Total	250			

d. Do not reject H_{0}.
29. a. $H_{0}: \mu_{\text {Discount }}=\mu_{\text {Variety }}=\mu_{\text {Department }} H_{1}$: Not all means are equal H_{0} is rejected if $F>3.89$.
b. From Excel, single-factor ANOVA,

ANOVA							
Source of							
Variation	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}	\boldsymbol{P}-value	\boldsymbol{F} crit	
Treatment	63.3333	2	31.6667	13.3803	0.0009	3.8853	
Error	$\frac{28.4000}{12}$	2.3667					
Total	91.7333	$\frac{14}{14}$					

c. The F-test statistic is 13.3803 .
d. p-value $=.0009$.
e. H_{0} is rejected. The F-statistic exceeds the critical value; the p-value is less than . 05 .
f. There is a difference in the treatment means.
31. a. $H_{0}: \mu_{\text {Rec Center }}=\mu_{\text {Key Street }}=\mu_{\text {Monclova }}=\mu_{\text {whitehouse }} H_{1}$: Not all means are equal. H_{0} is rejected if $F>3.10$
b. From Excel, single-factor ANOVA,

ANOVA							
Source of							
Variation	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}	\boldsymbol{P}-value	\boldsymbol{F} crit	
Treatment	87.7917	3	29.2639	9.1212	0.0005	3.0984	
Error	$\frac{64.1667}{}$	$\frac{20}{23}$	3.2083				
\quad Total	151.9583	23					

c. The F-test statistic is 9.1212
d. p-value $=.0005$.
e. Since computed F of $9.1212>3.10$, and the p-value is less than .05 , the null hypothesis of no difference is rejected
f. There is evidence the number of crimes differs by district.
33.
a. $H_{0}: \mu_{\text {Lecture }}=\mu_{\text {Distance }} \quad H_{1}: \mu_{\text {Lecture }} \neq \mu_{\text {Distance }}$
Critical value of $F=4.75$. Reject H_{0} if the F-stat >4.75.

Reject H_{0} in favor of the alternative.
b. $t=\frac{37-45}{\sqrt{9.5\left(\frac{1}{6}+\frac{1}{8}\right)}}-4.806$

Since $t^{2}=F$. That is $(-4.806)^{2}=23.098$. The p-value for this statistic is 0.0004 as well. Reject H_{0} in favor of the alternative.
c. There is a difference in the mean scores between lecture and distance-based formats.
35. a. $H_{0}: \mu_{\text {compact }}=\mu_{\text {Midsize }}=\mu_{\text {Large }} \quad H_{1}:$ Not all means are equal. H_{0} is rejected if $F>3.10$.
b. The F-test statistic is 8.258752 .
c. p-value is .0019 .
d. The null hypothesis of equal means is rejected because the F-statistic (8.258752) is greater than the critical value (3.10). The p-value (0.0019) is also less than the significance level (0.05).
e. The mean miles per gallon for the three car types are different.
37. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} . \quad H_{1}$: At least one mean is different. Reject H_{0} if $F>2.7395$. Since $13.74>2.74$, reject H_{0}. You can also see this from the p-value of $0.0001<0.05$. Priority mail express is faster than all three of the other classes, and priority mail is faster than either first-class or standard. However, first-class and standard mail may be the same.
39. For color, the critical value of F is 4.76 ; for size, it is 5.14 .

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Treatment	25.0	3	8.3333	5.88
Blocks	21.5	2	10.75	7.59
Error	$\frac{8.5}{5.5}$	$\frac{6}{11}$	1.4167	
Total	55.0			

$H_{0} \mathrm{~s}$ for both treatment and blocks (color and size) are rejected. At least one mean differs for color and at least one mean differs for size.
41. a. Critical value of F is 3.49 . Computed F is 0.668 . Do not reject H_{0}.
b. Critical value of F is 3.26 . Computed F value is 100.204 . Reject H_{0} for block means.
There is a difference in homes but not assessors.
43. For gasoline:
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3} ; H_{1}$: Mean mileage is not the same.
Reject H_{0} if $F>3.89$.
For automobile:
$H_{0}: \mu_{1}=\mu_{2}=\ldots=\mu_{7} ; H_{1}$: Mean mileage is not the same. Reject H_{0} if $F>3.00$.

ANOVA Table				
Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Gasoline	44.095	2	22.048	26.71
Autos	77.238	6	12.873	15.60
Error	9.905	$\frac{12}{2}$	0.825	
Total	131.238	20		

There is a difference in both autos and gasoline.
45. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5}=\mu_{6} ; H_{1}$: The treatment means are not equal. Reject H_{0} if $F>2.37$.

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Treatment	0.03478	5	0.00696	3.86
Error	$\underline{0.10439}$	$\frac{58}{63}$	0.0018	
Total	$\mathbf{0 . 1 3 9 1 7}$			

H_{0} is rejected. There is a difference in the mean weight of the colors.

b. Two-way ANOVA: Wage versus Gender, Sector

Source	DF	SS	MS	F	P
Gender	1	44086	44086	11.44	0.004
Sector	1	156468	156468	40.61	0.000
Interaction	1	14851	14851	3.85	0.067
Error	16	61640	3853		
Total	19	277046			

There is no interaction effect of gender and sector on wages. However, there are significant differences in mean wages based on gender and significant differences in mean wages based on sector.
c. One-way ANOVA: Wage versus Sector

Source	DF	SS	MS	F	P
Sector	1	156468	156468	23.36	0.000
Error	18	120578	6699		
Total	19	277046			

$S=81.85 \quad R-S q=56.48 \% \quad R-S q(a d j)=54.06 \%$

One-way ANOVA: Wage versus Gender					
Source	DF	SS	MS	F	P
Gender	1	44086	44086	3.41	0.081
Error	18	232960	12942		
Tota1	19	277046			

$$
s=113.8 \quad R-S q=15.91 \% \quad R-S q(a d j)=11.24 \%
$$

d. The statistical results show that only sector, private or public, has a significant effect on the wages of accountants.
49.
a. $H_{0}: \sigma_{p}^{2}=\sigma_{n p}^{2} \quad H_{1}: \sigma_{p}^{2} \neq \sigma_{n p}^{2}$

Reject H_{0}. The p-value is less than 0.05 . There is a difference in the variance of average selling prices between houses with pools and houses without pools.
b. $H_{0}: \sigma_{g}^{2}=\sigma_{n g}^{2} \quad H_{1}: \sigma_{g}^{2} \neq \sigma_{n g}^{2}$

Reject H_{0}. There is a difference in the variance of average selling prices between house with garages and houses without garages. The p-value is <0.0001.
c. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}=\mu_{5} ; H_{1}$: Not all treatment means are equal.
Fail to reject H_{0}. The p-value is much larger than 0.05 . There is no statistical evidence of differences in the mean selling price between the five townships.
d. $H_{0}: \mu_{c}=\mu_{\mathrm{i}}=\mu_{\mathrm{m}}=\mu_{\mathrm{p}}=\mu_{\mathrm{r}} \quad H_{1}$: Not all treatment means are equal. Fail to reject H_{0}. The p-value is much larger than 0.05 . There is no statistical evidence of differences in the mean selling price between the five agents. Is fairness of assignment based on the overall mean price, or based on the comparison of the means of the prices assigned to the agents? While the p-value is not less than 0.05 , it may indicate that the pairwise differences should be reviewed. These indicate that Marty's comparisons to the other agents are significantly different.
e. The results show that the mortgage type is a significant effect on the mean years of occupancy ($p=0.0227$). The interaction effect is also significant ($p=0.0026$).
51. a. $H_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{k}}=\mu_{\mathrm{T}} \quad H_{1}$: Not all treatment (manufacturer) mean maintenance costs, are equal.
Do not reject H_{0}. $(p=0.7664)$. The mean maintenance costs by the bus manufacturer is not different.
b. $H_{0}: \mu_{\mathrm{B}}=\mu_{\mathrm{K}}=\mu_{\mathrm{T}} \quad H_{1}$: Not all treatments have equal mean miles since the last maintenance.
Do not reject H_{0}. The mean miles since the last maintenance by the bus manufacturer is not different. P-value $=0.4828$.

CHAPTER 13

1. $\Sigma(x-\bar{x})(y-\bar{y})=10.6, s_{x}=2.7, s_{y}=1.3$

$$
r=\frac{10.6}{(5-1)(2.709)(1.38)}=0.75
$$

3. a. Sales.
b.

c. $\Sigma(x-\bar{x})(y-\bar{y})=36, n=5, s_{x}=1.5811$, $s_{y}=6.1237$

$$
r=\frac{36}{(5-1)(1.5811)(6.1237)}=0.9295
$$

d. There is a strong positive association between the variables.
5. a. Either variable could be independent. In the scatter plot, police is the independent variable.
b.

c. $n=8, \Sigma(x-\bar{x})(y-\bar{y})=-231.75$ $s_{x}=5.8737, s_{y}=6.4462$

$$
r=\frac{-231.75}{(8-1)(5.8737)(6.4462)}=-0.8744
$$

d. Strong inverse relationship. As the number of police increases, the crime decreases or, as crime increases the number of police decrease.
7. Reject H_{0} if $t>1.812$.

$$
t=\frac{.32 \sqrt{12-2}}{\sqrt{1-(.32)^{2}}}=1.068
$$

Do not reject H_{0}.
9. $H_{0}: \rho \leq 0 ; H_{1}: \rho>0$. Reject H_{0} if $t>2.552$. $d f=18$.

$$
t=\frac{.78 \sqrt{20-2}}{\sqrt{1-(.78)^{2}}}=5.288
$$

Reject H_{0}. There is a positive correlation between gallons sold and the pump price.
11. $H_{0}: \rho \leq 0 \quad H_{1}: \rho>0$

Reject H_{0} if $t>2.650$ with $d f=13$.

$$
t=\frac{0.667 \sqrt{15-2}}{\sqrt{1-0.667^{2}}}=3.228
$$

Reject H_{0}. There is a positive correlation between the number of passengers and plane weight.
13. a. $\hat{y}=3.7671+0.3630 x$

$$
\begin{aligned}
& b=0.7522\left(\frac{1.3038}{2.7019}\right)=0.3630 \\
& a=5.8-0.3630(5.6)=3.7671
\end{aligned}
$$

b. 6.3081 , found by $\hat{y}=3.7671+0.3630$ (7)
15. a. $\Sigma(x-\bar{x})(y-\bar{y})=44.6, s_{x}=2.726, s_{y}=2.011$

$$
\begin{aligned}
& r=\frac{44.6}{(10-1)(2.726)(2.011)}=.904 \\
& b=.904\left(\frac{2.011}{2.726}\right)=0.667 \\
& a=7.4-.677(9.1)=1.333
\end{aligned}
$$

b. $\hat{Y}=1.333+.667(6)=5.335$
17. a.

Sales vs. Assets

b. Computing correlation in Excel, $r=.9916$
c.

	Total Assets	12-Month Sales
Mean	36.1038	17.8088
Standard deviation	55.6121	25.2208
Count	12	12

$b=.9916 \frac{25.2208}{55.6121}=.4497 ; a=17.8088-.4497(36.1038)$

$$
=1.5729
$$

d. $\hat{Y}=1.5729+.4497(100.0)=451.2729(\$$ billion $)$
19. a. $b=-.8744\left(\frac{6.4462}{5.8737}\right)=-0.9596$

$$
a=\frac{95}{8}-(-0.9596)\left(\frac{146}{8}\right)=29.3877
$$

b. 10.1957, found by $29.3877-0.9596(20)$
c. For each police officer added, crime goes down by almost one.
21. $H_{0}: \beta \geq 0 \quad H_{1}: \beta<0 \quad d f=n-2=8-2=6$

Reject H_{0} if $t<-1.943$.

$$
t=-0.96 / 0.22=-4.364
$$

Reject H_{0} and conclude the slope is less than zero.
23. $H_{0}: \beta=0 \quad H_{1}: \beta \neq 0 \quad d f=n-2=12-2=10$ Reject H_{0} if t not between -2.228 and 2.228.

$$
t=0.08 / 0.03=2.667
$$

Reject H_{0} and conclude the slope is different from zero.
25. The standard error of estimate is 3.378 , found by $\sqrt{\frac{68.4814}{8-2}}$. The coefficient of determination is 0.76 , found by $(-0.874)^{2}$. Seventy-six percent of the variation in crimes can be explained by the variation in police.
27. The standard error of estimate is 0.913 , found by $\sqrt{\frac{6.667}{10-2}}$. The coefficient of determination is 0.82 , found by $29.733 / 36.4$. Eighty-two percent of the variation in kilowatt hours can be explained by the variation in the number of rooms.
29. a. $r^{2}=\frac{1,000}{1,500}=.6667$
b. $r=\sqrt{.6667}=.8165$
c. $s_{y \cdot x}=\sqrt{\frac{500}{13}}=6.2017$
31. a. $6.308 \pm(3.182)(.993) \sqrt{.2+\frac{(7-5.6)^{2}}{29.2}}$
$=6.308 \pm 1.633$
$=[4.675,7.941]$
b. $6.308 \pm(3.182)(.993) \sqrt{1+1 / 5+.0671}$
$=[2.751,9.865]$
33. a. $4.2939,6.3721$
b. $2.9854,7.6806$
35. a.

The correlation of X and Y is 0.2975 . The scatter plot reveals the variables do not appear to be linearly related. In fact, the pattern is U-shaped.
b. The correlation coefficient is 2975 .
c. Perform the task.

e. The correlation between Y and $X^{2}=.9975$.
f. The relationship between Y and X is nonlinear. The relationship between Y and the transformed X^{2} in nearly perfectly linear.
g. Linear regression analysis can be used to estimate the linear relationship: $Y=a+b(X)^{2}$.
37. $H_{0}: \rho \leq 0 ; H_{1}: \rho>0$. Reject H_{0} if $t>1.714$.

$$
t=\frac{.94 \sqrt{25-2}}{\sqrt{1-(.94)^{2}}}=13.213
$$

Reject H_{0}. There is a positive correlation between passengers and weight of luggage.
39. $H_{0}: \rho \leq 0 ; H_{1}: \rho>0$. Reject H_{0} if $t>2.764$.

$$
t=\frac{.47 \sqrt{12-2}}{\sqrt{1-(.47)^{2}}}=1.684
$$

Do not reject H_{0}. Using an online p-value calculator or statistical software, the p-value is 0.0615 .
41. a. The correlation is -0.0937 . The linear relationship between points allowed and points scored is very, very weak.
b. $H_{0}: \rho \geq 0 \quad H_{1}: \rho<0 \quad$ Reject H_{0} if $t<-1.697 . \mathrm{df}=30$ $t=\frac{-0.0937 \sqrt{32-2}}{\sqrt{1-(-0.0937)^{2}}}=-1.680$. Using an online calculator, p-value $=.6224$
Fail to reject H_{0}. The evidence suggests no significant inverse relationship between points scored and points allowed.
43. a. There is a positive relationship between wins and point differential. Also, all teams with a "losing" season record (winning 7 or less games) recorded a negative point differential.

Wins versus Point Differential

b. $r=.9367$. There is a strong, positive relationship between wins and point differential.
c. The $R^{2}=87.78 \%$. Point differential accounts for 87.78% of the variance of wins.

d. Wins $=7.9375+.0282$ (point differential)
e. Setting wins $=8$, solve $8=7.9375+.0282$ (point differential) for point differential. The point differential is +2.2163 points; points scored and points allowed would be nearly equal.
f. The slope indicates that for every positive single point increase in point differential, wins increase .0282. Slope equals: (change in Wins)/(for a unit change in point differential). Setting (change in Wins to 1), solve (Change in point differential) $=1 / .0282=35.46$ increase in the point differential. So, given that a team can win 8 of 16 games with about a zero point differential, we can predict that winning 9 games would require a point differential of about 35 points; winning 10 games would require a point differential of about 70 points, etc.
45. a.

There is an inverse relationship between the variables. As the months owned increase, the number of hours exercised decreases.
b. $r=-0.827$ The correlation coefficent indicates a strong, inverse linear relationship between months owned and hours exercised.
c. $H_{0}: \rho \geq 0 ; H_{1}: \rho<0$. Reject H_{0} if $t<-2.896$.

$$
t=\frac{-0.827 \sqrt{10-2}}{\sqrt{1-(-0.827)^{2}}}=-4.16
$$

Reject H_{0}. There is a negative association between months owned and hours exercised.
47. a. The appears to be a weak positive relationship between population and median age.

b. Compute by hand or use Excel to compute the correlation coefficient.

Population (millions) \boldsymbol{X}	Median Age \boldsymbol{Y}	$(\boldsymbol{X}-\overline{\boldsymbol{X}})$	$(\boldsymbol{X}-\overline{\boldsymbol{X}})^{2}$	$(\boldsymbol{Y}-\overline{\boldsymbol{Y}})$	$(\boldsymbol{Y}-\overline{\boldsymbol{Y}})^{2}$	$(\boldsymbol{X}-\overline{\boldsymbol{X}})(\boldsymbol{Y}-\overline{\boldsymbol{Y}})$
2.833	31.5	0.3612	0.130465	-0.54	0.2916	-0.19505
1.233	30.5	-1.2388	1.534625	-1.54	2.3716	1.907752
2.144	30.9	-0.3278	0.107453	-1.14	1.2996	0.373692
3.849	31.6	1.3772	1.89668	-0.44	0.1936	-0.60597
8.214	34.2	5.7422	32.97286	2.16	4.6656	12.40315
1.448	34.2	-1.0238	1.048166	2.16	4.6656	-2.21141
1.513	30.7	-0.9588	0.919297	-1.34	1.7956	1.284792
1.297	31.7	-1.1748	1.380155	-0.34	0.1156	0.399432
1.257	32.5	-1.2148	1.475739	0.46	0.2116	-0.55881
0.93	32.6	-1.5418	2.377147	0.56	0.3136	-0.86341
24.718	320.4		43.84259		15.924	11.93418

$$
\begin{aligned}
& \bar{X}=\frac{24.718}{10}=2.4718 \bar{Y}=\frac{320.4}{10}=32.04 \quad s_{x}=\sqrt{\frac{43.84259}{9}} \\
& =2.207 \\
& s_{y}=\sqrt{\frac{15.924}{9}}=1.330
\end{aligned}
$$

$r=\frac{11.93418}{(10-1)(2.207)(1.330)}=0.452$
The correlation coefficient indicates a weak positive relationship between population and median age.
c. The slope of 0.272 indicates that for each increase of 1 million in the population that the median age increases on average by 0.272 year.

d. Median age $=31.3672+.2722$ (population). For a city with 2.5 million people, the predicted median age is 32.08 years, found by $31.4+0.272$ (2.5).
e. The p-value (0.190) for the population variable is greater than, say 0.05 . A test for significance of that coefficient would fail to be rejected. In other words, it is possible the population coefficient is zero.
f. The results indicate no significant linear relationship between a city's median age and its population.
49. a. The scatter plot indicates an inverse relationship between the winning bid and the number of bidders.

b. Using the following Excel software output, the correlation coefficient is -.7064 . It indicates a moderate inverse relationship between winning bid and number of bidders.
c.

SUMMARY OUTPUT											
Regression Statistics											
Multiple R R Square Adjusted R Square Standard Error Observations		$\begin{array}{r} 0.7064 \\ 0.4990 \\ 0.4604 \\ 1.1138 \\ 15 \end{array}$									
ANOVA											
df				SS	MS	$F \quad p$	p-Value				
Regression Residual Total	n 116.0616		16.0616	12.9467	0.0032						
				16.1277	1.2406						
				32.1893							
Coefficients			Standard Erro		or t-Stat	p-Value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%	
Intercept	11.2360		0.9689	11.5961	0.0000	9.1427	13.3293	9.1427	13.3293		
Bidders	-0.4667		0.1297	-3.5982	0.0032	-0.7470	-0.1865	-0.7470	-0.1865		

The $R^{2}=49.90 \%$.; the "number of bidders" accounts for 49.90% of the variance of the "winning bid cost".
d. The regression equation is Winning bid $=11.236-0.4667$ (number of bidders).
e. This indicates there is a negative relationship between the number of bids (X) and the winning bid (Y) and that for each additional bidder the winning bid decreases by 0.4667 million. The slope is significantly different from zero because its p-value, .0032 , is less than .05 .
f. "Winning bid cost" $=11.235986-0.466727(7.0)=$ $\$ 7.968897$ million
g. $7.9689 \pm(2.160)(1.114) \sqrt{1+\frac{1}{15}+\frac{(7-7.1333)^{2}}{837-\frac{(107)^{2}}{15}}}$
7.9689 ± 2.4854
[5.4835, 10.4543]
51. a. There appears to be a relationship between the two vari ables. As the distance increases, so does the shipping time.

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.6921
R Square	0.4790
Adjusted R Square	0.4501
Standard Error	2.0044
Observations	20

ANOVA

	df	SS	MS	\boldsymbol{F}	\boldsymbol{p}-Value
Regression	1	66.4864	66.4864	16.5495	0.0007
Residual	18	72.3136	4.0174		
Total	19	138.8000			

	Coefficients	Standard Error	\boldsymbol{t}-Stat	\boldsymbol{p}-Value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	-7.1264	3.8428	-1.8545	0.0801	-15.1999	0.9471	-15.1999	0.9471
Miles	0.0214	0.0053	4.0681	0.0007	0.0103	0.0324	0.0103	0.0324

b. From the regression output, $r=.6921$
$H_{0}: \rho \leq 0 \quad H_{0}: \rho>0 \quad$ Reject H_{0} if $t>1.734$.
$t=\frac{0.6921 \sqrt{20-2}}{1-(0.6921)^{2}}=3.4562$; the one-sided p-value
$(.0007 / 2)$ is .0004 . H_{0} is rejected. There is a positive association between shipping distance and shipping time.
c. $R^{2}=(0.6921)^{2}=0.4790$, nearly half of the variation in shipping time is explained by shipping distance.
d. The standard error of estimate is $2.0044=\sqrt{72.3136} / 18$.
e. Predicting days based on miles will not be very accurate. The standard error of the estimate indicates that the prediction of days may be off by nearly 2 days. The regression equation only accounts for about half of the variation in shipping time with distance.
53.

a. The regression equation is: Price $=26.8054+2.4082$ dividend. For each additional dollar paid out in a dividend, the per share price increases by $\$ 2.4082$ on average.
b. $H_{0}: \beta=0 \quad H_{1}: \beta \neq 0 \quad$ At the 5% level, reject H_{0} if t is not between -2.048 and 2.048. $t=2.4082 / 0.3279=7.3446$ Reject H_{0} and conclude slope is not zero.
c. $R^{2}=\frac{\text { Reg } S S}{\text { Total } S S}=\frac{5057.5543}{7682.7205}=.6583 .65 .83 \%$ of the variation in price is explained by the dividend.
d. $r=\sqrt{.6583}=.8114 ; 28 \mathrm{df} ; H_{0}: \rho \leq 0 H_{1}: \rho>0$ At the 5% level, reject H_{0} when $t>1.701$

$$
t=\frac{0.8114 \sqrt{30-2}}{\sqrt{1-(0.8114)^{2}}}=7.3457 ; \text { using a } p \text {-value calculator, }
$$

p-value is less than . 00001.
Thus H_{0} is rejected. The population correlation is positive.
e. Price $=26.8054+2.4082(\$ 10)=\$ 50.8874$
f. $\$ 50.8874 \pm 2.048(9.6828) \sqrt{1+\frac{1}{30}+\frac{(10-10.6777)^{2}}{872.1023}}$

The interval is (\$30.7241, \$71.0507).
55. a. 35
b. $s_{y \cdot x}=\sqrt{29,778,406}=5,456.96$
c. $r^{2}=\frac{13,548,662,082}{14,531,349,474}=0.932$
d. $r=\sqrt{0.932}=0.966$
e. $H_{0}: \rho \leq 0, H_{1}: \rho>0$; reject H_{0} if $t>1.692$.

$$
t=\frac{.966 \sqrt{35-2}}{\sqrt{1-(.966)^{2}}}=21.46
$$

Reject H_{0}. There is a direct relationship between size of the house and its market value.
57.

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.8346
R Square	0.6966
Adjusted R Square	0.6662
Standard Error	161.6244
Observations	12

ANOVA

	df	SS	MS	\boldsymbol{F}	\boldsymbol{p}-Value
Regression	1	599639.0413	599639.0413	22.9549	0.0007
Residual	10	261224.4587	26122.4459		
Total	11	860863.5000			

	Coefficients	Standard Error	\boldsymbol{t}-Stat	\boldsymbol{p}-Value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept	-386.5455	246.8853	-1.5657	0.1485	-936.6403	163.5494	-936.6403	163.5494
Speed	703.9669	146.9313	4.7911	0.0007	376.5837	1031.3502	376.5837	1031.3502

a. The correlation of Speed and Price is 0.8346 .

$$
H_{0}: \rho \leq 0 \quad H_{1}: \rho>0 \quad \text { Reject } H_{0} \text { if } t>1.8125 .
$$

$t=\frac{0.8346 \sqrt{12-2}}{\sqrt{1-(0.8346)^{2}}}=4.7911$ Using a p-value calculator or statistical software, the p-value is 0.0004
Reject H_{0}. It is reasonable to say the population correlation is positive.
b. The regression equation is Price $=-386.5455+703.9669$ Speed.
c. The standard error of the estimate is 161.6244. Any prediction with a residual more than the standard error would be unusual. The computers 2,3 , and 10 have errors in excess of $\$ 200.00$.
59.

SUMMARY OUTPUT								
Regression Statistics								
Multiple $R \quad 0.9872$								
R Square 0.9746								
Adjusted R Square 0.9730								
Standard Error $\quad 7.7485$								
Observations 18								
ANOVA								
df SS MS F ${ }^{\text {d }}$-Value								
Regression 1 36815.6444 36815.6444 613.1895 0.0000 Residual 16 960.6333 60.0396 Total 17 37776.2778								
Coefficients		Standard Error	t-Stat	p-Value	Lower 95\%	Upper 95\%	Lower 95.0\%	Upper 95.0\%
Intercept Consumption	-29.7000	5.2662	-5.6398	0.0000	-40.8638	-18.5362	-40.8638	-18.5362
	Consumption 22.9333	0.9261	24.7627	0.0000	20.9700	24.8966	20.9700	24.8966

a. The correlation of Weight and Consumption is 0.9872 .
$H_{0}: \rho \leq 0 \quad H_{1}: \rho>0 \quad$ Reject H_{0} if $t>1.746$.
$t=\frac{0.9872 \sqrt{18-2}}{1-(0.9872)^{2}}=24.7627$. Using a p-value calculator or
statistical software, the p-value is less than . 00001 .
Reject H_{0}. It is quite reasonable to say the population correlation is positive!
b. The regression equation is Weight $=-29.7000+$ 22.9333 (Consumption). Each additional cup increases the estimated weight by 22.9333 pounds.
c. The fourth dog has the largest residual weighing 21 pounds less than the regression equation would estimate. The 16th dog's residual of 10.03 also exceeds the standard error of the estimate; it weights 10.03 pounds more that the predicted weight.
61. a. The relationship is direct. Fares increase for longer flights.

b. The correlation between Distance and Fare is 0.6556 .

$H_{0}: \rho \leq 0 ; H_{1}: \rho>0$; Reject H_{0} if $t>1.701$.
$d f=28$ $t=\frac{0.6556 \sqrt{30-2}}{\sqrt{1-(0.6556)^{2}}}$
${ }^{2}=$
statistical software, the p-value is .000042 .
Reject H_{0}. There is a significant positive correlation between fares and distances.
c. 42.98 percent, found by $(0.6556)^{2}$, of the variation in fares is explained by the variation in distance.
d. The regression equation is Fare $=147.0812+0.0527$ (Distance). Each additional mile adds $\$ 0.0527$ to the fare. A 1500-mile flight would cost $\$ 226.1312$, found by $\$ 147.0812$ $+0.0527(1500)$.
e. A flight of 4218 miles is outside the range of the sampled data. So the regression equation may not be useful.
63. a. There does seem to be a direct relationship between the variables.

b. The regression analysis of attendance versus team salary follows:

The regression equation is: Attendance $=.4339+.0136$ (Team Salary). Expected Attendance with a salary of $\$ 100$ million is 1.7939 million, found by $.4339+0.0136(100)$
c. Increasing the salary by 30 million will increase attendance by 0.408 million on average, found by 0.0136 (30).
d. $H_{0}: \beta \leq 0 \quad H_{1}: \beta>0 \mathrm{df}=\mathrm{n}-2=30-2=28$

Reject H_{0} if $t>1.701$
$t=0.0136 / 0.0023=6.0295$, Using a p-value calculator or statistical software, the p-value is less than . 00001 .
Reject H_{0} and conclude the slope is positive
e. 0.5649 or 56.49% of the variation in attendance is explained by variation in salary.
f.

Correlation Matrix			
	Attendance	ERA	BA
Attendance	1		
ERA	-0.5612	1	
BA	0.2184	-0.4793	1

The correlation between attendance and batting average is 0.2184 .
$H_{0}: \rho \leq 0 \quad H_{1}: \rho>0 \quad$ At the 5% level, reject H_{0} if $t>1.701$.
$t=\frac{0.2184 \sqrt{30-2}}{\sqrt{1-(0.2184)^{2}}}=1.1842$
Using a p-value calculator or statistical software, the p-value is .1231. Fail to reject H_{0}.
The batting average and attendance are not positively correlated.
The correlation between attendance and ERA is -0.5612 . The correlation between attendance and ERA is stronger than the correlation between attendance and batting average.
$H_{0}: \rho \geq 0 \quad H_{1}: \rho<0 \quad$ At the 5% level, reject H_{0} if
$t<-1.701$
$t=\frac{-0.5612 \sqrt{30-2}}{\sqrt{1-(-0.5612)^{2}}}=-3.5883$
Using a p-value calculator or statistical software, the p-value is .0006. Reject H_{0}.
The ERA and attendance are negatively correlated. Attendance increases when ERA decreases.

CHAPTER 14

1. a. It is called multiple regression analysis because the analysis is based on more than one independent variable.
b. +9.6 is the coefficient of the independent variable, per capita income. It means that for a 1-unit increase in per capita income, sales will increase $\$ 9.60$.
c. $-11,600$ is the coefficient of the independent variable, regional unemployment rate. Note that this coefficient is negative. It means that for a 1 -unit increase in regional unemployment rate, sales will decrease \$11,600.
d. $\$ 374,748$ found by $=64,100+0.394(796,000)+9.6(6940)$ 11,600(6.0)
2. a. 497.736 , found by $\hat{y}=16.24+0.017(18)+0.0028(26,500)+42(3)$

$$
+0.0012(156,000)+0.19(141)+26.8(2.5)
$$

b. Two more social activities. Income added only 28 to the index; social activities added 53.6 .
5. a. $s_{Y \cdot 12}=\sqrt{\frac{S S E}{n-(k+1)}}=\sqrt{\frac{583.693}{65-(2+1)}}$

$$
=\sqrt{9.414}=3.068
$$

Based on the empirical rule, about 95\% of the residuals will be between ± 6.136, found by 2(3.068).
b. $\quad R^{2}=\frac{\mathrm{SSR}}{\mathrm{SS} \text { total }}=\frac{77.907}{661.6}=.118$

The independent variables explain 11.8\% of the variation.
c. $R_{\text {वdj }}^{2}=1-\frac{\frac{\mathrm{SSE}}{n-(k+1)}}{\frac{\mathrm{SS} \text { total }}{n-1}}=1-\frac{\frac{583.693}{65-(2+1)}}{\frac{661.6}{65-1}}$

$$
=1-\frac{9.414}{10.3375}=1-.911=.089
$$

7. a. $\hat{y}=84.998+2.391 x_{1}-0.4086 x_{2}$
b. 90.0674 , found by $\hat{y}=84.998+2.391(4)-0.4086(11)$
c. $n=65$ and $k=2$
d. $H_{0}: \beta_{1}=\beta_{2}=0 \quad H_{1}:$ Not all β s are 0 Reject H_{0} if $F>3.15$.
$F=4.14$, reject H_{0}. Not all net regression coefficients equal zero.
e. For $x_{1} \quad$ For x_{2}
$H_{0}: \beta_{1}=0 \quad H_{0}: \beta_{2}=0$
$H_{1}: \beta_{1} \neq 0 \quad H_{1}: \beta_{2} \neq 0$
$t=1.99 \quad t=-2.38$
Reject H_{0} if $t>2.0$ or $t<-2.0$
Delete variable 1 and keep 2.
f. The regression analysis should be repeated with only x_{2} as the independent variable.
8. a. The regression equation is: Performance $=29.3+5.22$ Aptitude + 22.1 Union

Predictor	Coef	SE Coef	T	P
Constant	29.28	12.77	2.29	0.041
Aptitude	5.222	1.702	3.07	0.010
Union	22.135	8.852	2.50	0.028

$S=16.9166 R-S q=53.3 \% R-S q(a d j)=45.5 \%$
Analysis of Variance
Source DF SS MS F P

Regression	2	3919.3	1959.6	6.85	0.010

Residual Error $123434.0 \quad 286.2$
Total
b. These variables are both statistically significant in predicting performance. They explain 45.5% of the variation in performance. In particular union membership increases the typical performance by 22.1. A 1-unit increase in aptitude predicts a 5.222 increase in performance score
c. $H_{0}: \beta_{2}=0 \quad H_{1}: \beta_{2} \neq 0$

Reject H_{0} if $t<-2.179$ or $t>2.179$. Since 2.50 is greater than 2.179, we reject the null hypothesis and conclude that union membership is significant and should be included. The corresponding p-value is .028 .
d. When you consider the interaction variable, the regression equation is Performance $=38.7+3.80$ Aptitude - 0.1 Union + $3.61 x_{1} x_{2}$.

Predictor	Coef	SE Coef	T	P
Constant	38.69	15.62	2.48	0.031
Aptitude	3.802	2.179	1.74	0.109
Union	-0.10	23.14	-0.00	0.997
$X_{1} X_{2}$	3.610	3.473	1.04	0.321

The t-value corresponding to the interaction term is 1.04 . The p-value is .321 This is not significant. So we conclude there is no interaction between aptitude and union membership when predicting job performance.
11. a. The regression equation is Price $=3,080-54.2$ Bidders + 16.3 Age

Predictor	Coef	SE Coef	T	P
Constant	3080.1	343.9	8.96	0.000
Bidders	-54.19	12.28	-4.41	0.000
Age	16.289	3.784	4.30	0.000

$\begin{array}{cccc}\text { Age } & 16.289 & 3.784 & 4.30 \\ \text { The price decreases } \$ 54.2 & 0.000\end{array}$ pates. Meanwhile the price increases $\$ 16.3$ as the painting gets older. While one would expect older paintings to be
worth more, it is unexpected that the price goes down as more bidders participate!
b. The regression equation is

Price $=3,972-185$ Bidders +6.35 Age $+1.46 x_{1} x_{2}$

Predictor	Coef	SE Coef	T	P
Constant	3971.7	850.2	4.67	0.000
Bidders	-185.0	114.9	-1.61	0.122
Age	6.353	9.455	0.67	0.509
$X_{1} X_{2}$	1.462	1.277	1.15	0.265

The t-value corresponding to the interaction term is 1.15 . This is not significant. So we conclude there is no interaction
c. In the stepwise procedure, the number of bidders enters the equation first. Then the interaction term enters. The variable age would not be included as it is not significant. Response is Price on 3 predictors, with $N=25$.

Step	1	2
Constant	4,507	4.540
Bidders	-57	-256
T-Value	-3.53	-5.59
P-Value	0.002	0.000
X $_{1}$		2.25
T-Value		4.49
P-Value		0.000
S	295	218
R-Sq	35.11	66.14
R-Sq(adj)	32.29	63.06

Commentary: The stepwise method is misleading. In this problem, the first step is to run the "full" model with interaction. The result is that none of the independent variables are different from zero. So, remove the interaction term and rerun. Now we get the result in part (a). This is the model that should be used to predict price.
13. a. $n=40$
b. 4
c. $R^{2}=\frac{750}{1,250}=.60$ Note total $S S$ is the sum of regression $S S$ and error SS.
d. $s_{y \cdot 1234}=\sqrt{500 / 35}=3.7796$
e. $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$
H_{1} : Not all the β s equal zero.
H_{0} is rejected if $F>2.65$.
$F=\frac{750 / 4}{500 / 35}=13.125$
H_{0} is rejected. At least one β_{i} does not equal zero
15. a. $n=26$
b. $R^{2}=100 / 140=.7143$
c. 1.4142 , found by $\sqrt{2}$
d. $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=\beta_{5}=0$ H_{1} : Not all the β s are 0 .
H_{0} is rejected if $F>2.71$.
Computed $F=10.0$. Reject H_{0}. At least one regression coefficient is not zero.
e. H_{0} is rejected in each case if $t<-2.086$ or $t>2.086$. x_{1} and x_{5} should be dropped.
17. a. $\$ 28,000$
b. $R^{2}=\frac{\mathrm{SSR}}{\mathrm{SS} \text { total }}=\frac{3,050}{5,250}=.5809$
c. 9.199 , found by $\sqrt{84.62}$
d. H_{0} is rejected if $F>2.97$ (approximately)

$$
\text { Computed } F=\frac{1,016.67}{84.62}=12.01
$$

H_{0} is rejected. At least one regression coefficient is not zero.
e. If computed t is to the left of -2.056 or to the right of 2.056 , the null hypothesis in each of these cases is rejected. Computed t for x_{2} and x_{3} exceed the critical value. Thus, "population" and "advertising expenses" should be retained and "number of competitors," x_{1}, dropped.
19. a. The strongest correlation is between High School GPA and Paralegal GPA. No problem with multicollinearity.
b. $R^{2}=\frac{4.3595}{5.0631}=.8610$
c. H_{0} is rejected if $F>5.41$.

$$
F=\frac{1.4532}{0.1407}=10.328
$$

At least one coefficient is not zero.
d. Any H_{0} is rejected if $t<-2.571$ or $t>2.571$. It appears that only High School GPA is significant. Verbal and math could be eliminated.
e. $R^{2}=\frac{4.2061}{5.0631}=.8307$
R^{2} has only been reduced .0303 .
f. The residuals appear slightly skewed (positive) but acceptable.
g. There does not seem to be a problem with the plot
21. a. The correlation of Screen and Price is 0.893 . So there does appear to be a linear relationship between the two.
b. Price is the "dependent" variable.
c. The regression equation is Price $=-1242.1+50.671$ (screen size). For each inch increase in screen size, the price increases \$50.671 on average.
d. Using a "dummy" variable for Sony, the regression equation is Price $=11145.6+46.955$ (Screen) +187.10 (Sony). If we set "Sony" $=0$, then the manufacturer is Samsung and the price is predicted only by screen size. If we set "Sony" $=1$, then the manufacturer is Sony. Therefore, Sony TV's are, on average, $\$ 187.10$ higher in price than Samsung TVs.
e. Here is some of the output.

| Coefficients | | | | | |
| :--- | ---: | :---: | ---: | ---: | ---: | ---: |
| Term | Coef | SE Coef | 95\% CI | \boldsymbol{t}-Value | \boldsymbol{p}-Value |
| Constant | -1145.6 | 220.7 | $(-1606.1,-685.2)$ | -5.19 | <0.0001 |
| Screen | 46.955 | 5.149 | $(36.215,57.695)$ | 9.12 | <0.0001 |
| Sony | 187.10 | 71.84 | $(37.24,336.96)$ | 2.60 | 0.0170 |
| 1 | 18 | | | | |

Based on the p-values, screen size and manufacturer are both significant in predicting price.
f. A histogram of the residuals indicates they follow a normal distribution.

g. There is no apparent relationship in the residuals, but the residual variation may be increasing with larger fitted values.

23. a.

Scatter Diagram of Sales vs. Advertising, Accounts, Competitors, Potential

Sales seem to fall with the number of competitors and rise with the number of accounts and potential.
b. Pearson correlations

	Sales	Advertising	Accounts Competitors	
Advertising	0.159			
Accounts	0.783	0.173		
Competitors	-0.833	-0.038	-0.324	
Potential	0.407	-0.071	0.468	-0.202

The number of accounts and the market potential are moderately correlated
c. The regression equation is:

Sales $=178+1.81$ Advertising +3.32 Accounts -21.2 Competitors +0.325 Potential

Predictor	Coef	SE Coef	T	P
Constant	178.32	12.96	13.76	0.000
Advertising	1.807	1.081	1.67	0.109
Accounts	3.3178	0.1629	20.37	0.000
Competitors	-21.1850	0.7879	-26.89	0.000
Potential	0.3245	0.4678	0.69	0.495

$S=9.60441$ R-Sq $=98.9 \% R-S q(a d j)=98.7 \%$

Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	4	176777	44194	479.10	0.000
Residual Error	21	1937	92		
Total	25	178714			

The computed F value is quite large. So we can reject the null hypothesis that all of the regression coefficients are zero. We conclude that some of the independent variables are effective in explaining sales.
d. Market potential and advertising have large p-values (0.495 and 0.109 , respectively). You would probably drop them.
e. If you omit potential, the regression equation is:

Sales $=180+1.68$ Advertising +3.37 Accounts -21.2 Competitors

Predictor	Coef	SE Coef	T	P
Constant	179.84	12.62	14.25	0.000
Advertising	1.677	1.052	1.59	0.125
Accounts	3.3694	0.1432	23.52	0.000
Competitors	-21.2165	0.7773	-27.30	0.000

Now advertising is not significant. That would also lead you to cut out the advertising variable and report that the polished regression equation is: Sales $=187+3.41$ Accounts -21.2 Competitors

Predictor	Coef	SE Coef	T	P
Constant	186.69	12.26	15.23	0.000
Accounts	3.4081	0.1458	23.37	0.000
Competitors	-21.1930	0.8028	-26.40	0.000

f.

Histogram of the Residuals (Response Is Sales)

The histogram looks to be normal. There are no problems shown in this plot.
g. The variance inflation factor for both variables is 1.1. They are less than 10. There are no troubles as this value indicates the independent variables are not strongly correlated with each other.
25. The computer output is:

Predictor	Coef	StDev	t-ratio	p
Constant	651.9	345.3	1.89	0.071
Service	13.422	5.125	2.62	0.015
Age	-6.710	6.349	-1.06	0.301
Gender	205.65	90.27	2.28	0.032
Job	-33.45	89.55	-0.37	0.712
Analysis of	Variance			
SOURCE	DF	SS	MS	F
Regression	4	1066830	266708	4.77
Error	25	1398651	55946	
Total	29	2465481		

a. $\hat{y}=651.9+13.422 x_{1}-6.710 x_{2}+205.65 x_{3}-33.45 x_{4}$
b. $R^{2}=.433$, which is somewhat low for this type of study.
c. $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0 ; H_{1}$: Not all β s equal zero. Reject H_{0} if $F>2.76$.

$$
F=\frac{1,066,830 / 4}{1,398,651 / 25}=4.77
$$

H_{0} is rejected. Not all the β_{i} s equal 0 .
d. Using the .05 significance level, reject the hypothesis that the regression coefficient is 0 if $t<-2.060$ or $t>2.060$. Service and gender should remain in the analyses; age and job should be dropped.
e. Following is the computer output using the independent variables service and gender.

Predictor	Coef	StDev	t-ratio	p	
Constant	784.2	316.8	2.48	0.020	
Service	9.021	3.106	2.90	0.007	
Gender	224.41	87.35	2.57	0.016	
Analysis of	Variance				
SOURCE	DF	SS	MS	F	p
Regression	2	998779	499389	9.19	0.001
Error	27	1466703	54322		
Total	29	2465481			

A man earns $\$ 224$ more per month than a woman. The difference between management and engineering positions is not significant.
27. a. The correlation between the independent variables, yield and EPS, is small, .16195 . Multicollinearity should not be a issue.

Correlation Matrix P/E			
EPS	Yield		
P/E	1		
EPS	-0.60229	1	
Yield	0.05363	0.16195	1

b. Here is part of the software output:

Predictor	Coef	SE Coef	\boldsymbol{t}	\boldsymbol{p}-Value
Constant	29.913	5.767	5.19	0.000
EPS	-5.324	1.634	-3.26	0.005
Yield	1.449	1.798	0.81	0.431

The regression equation is P/E = 29.913-5.324 EPS + 1.4 49 Yield
c. Thus EPS has a significant relationship with P/E but not with Yield.

The regression equation is P/E = 33.5668-5.1107 EPS
d. If EPS increases by one, P/E decreases by 5.1107
e. Yes, the residuals are evenly distributed above and below the horizontal line (residual $=0$).

EPS Residual Plot

EPS
f. No. the adjusted R^{2} indicates that the regression equation only accounts for 32.78% of the variation in P/E. The predictions will not be accurate.
29. a. The regression equation is Sales $(000)=1.02+0.0829$ Infomercials.

Predictor	Coef	SE Coef	T	P
Constant	1.0188	0.3105	3.28	0.006
Infomercials	0.08291	0.01680	4.94	0.000

Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	1	2.3214	2.3214	24.36	0.000
Residual Error	13	1.2386	0.0953		
Total	14	3.5600			

The global test demonstrates there is a relationship between sales and the number of infomercials.

b.

The residuals appear to follow the normal distribution.
31. a. The regression equation is

Auction price $=-118,929+1.63$ Loan +2.1 Monthly payment +50 Payments made

Analysis of Variance					
Source	DF	SS	MS	F	P
Regression	3	5966725061	1988908354	39.83	0.000
Residual					
\quad Error	16	798944439	49934027		
Total	19	6765669500			

The computed F is 39.83 . It is much larger than the critical value 3.24. The p-value is also quite small. Thus, the null hypothesis that all the regression coefficients are zero can be rejected. At least one of the multiple regression coefficients is different from zero.
b.

Predictor	Coef	SE Coef	T	P
Constant	-118929	19734	-6.03	0.000
Loan	1.6268	0.1809	8.99	0.000
Month1y Payment	2.06	14.95	0.14	0.892
Payments Made	50.3	134.9	0.37	0.714

The null hypothesis is that the coefficient is zero in the individual test. It would be rejected if t is less than -2.120 or more than 2.120. In this case, the t value for the loan variable is larger than the critical value. Thus, it should not be removed. However, the monthly payment and payments made variables would likely be removed.
c. The revised regression equation is: Auction price $=-119,893+$ 1.67 Loan
33. a. The correlation matrix is as follows:

	Price	Bedrooms	Size (square feet)	Days on Baths	Market
Price	1.000				
Bedrooms	0.844	1.000			
Size (square feet)	0.952	0.877	1.000		
Baths	0.825	0.985	0.851	1.000	
Days on market	0.185	0.002	0.159	-0.002	1

The correlations for strong, positive relationships between "Price" and the independent variables "Bedrooms," "Size," and "Baths." There appears to be no relationship between "Price" and Days-on-the-Market. The correlations among the independent variables are very strong. So, there would be a high degree of multicollinearity in a multiple regression
equation if all the variables were included. We will need to be careful in selecting the best independent variable to predict price.
b.

SUMMARY OUTPUT				
Regression Statistics				
Multiple R	0.952			
R Square	0.905			
Adjusted R Square	0.905			
Standard Error	49655.822			
Observations	105.000			
ANOVA				
df	SS	MS	F	Significance F
Regression	$2.432 \mathrm{E}+12$	$2.432 \mathrm{E}+12$	$9.862 \mathrm{E}+02$	1.46136E-54
Residual 103	$2.540 \mathrm{E}+11$	$2.466 \mathrm{E}+09$		
Total 104	$2.686 \mathrm{E}+12$			
Coefficients		Standard Error	r t-Stat	p-Value
Intercept Size (square feet)	-15775.955	12821.967	-1.230	0.221
	108.364	3.451	31.405	0.000

The regression analysis shows a significant relationship between price and house size. The p-value of the F-statistic is 0.00 , so the null hypothesis of "no relationship" is rejected. Also, the p-value associated with the regression coefficient of "size" is 0.000 . Therefore, this coefficient is clearly different from zero.
The regression equation is: Price $=-15775.995+108.364$ Size.
In terms of pricing, the regression equation suggests that houses are priced at about $\$ 108$ per square foot.
c. The regression analyses of price and size with the qualitative variables pool and garage follow. The results show that the variable "pool" is statistically significant in the equation. The regression coefficient indicates that if a house has a pool, it adds about $\$ 28,575$ to the price. The analysis of including "garage" to the analysis indicates that it does not affect the pricing of the house.
Adding pool to the regression equation increases the R-square by about 1%.

d. The following histogram was developed using the residuals from part (c). The normality assumption is reasonable.

e. The following scatter diagram is based on the residuals in part (c) with the predicted dependent variable on the horizontal axis and residuals on the vertical axis. There does appear that the variance of the residuals increases with higher values of the predicted price. You can experiment with transformations such as the Log of Price or the square root of price and observe the changes in the graphs of residuals. Note that the transformations will make the interpretation of the regression equation more difficult.

35. a.

The correlation analysis shows that age and odometer miles are positively correlated with cost and that "miles since last maintenance" shows that costs increase with fewer miles between maintenance. The analysis also shows a strong correlation between age and odometer miles. This indicates the strong possibility of multicollinearity if age and odometer miles are included in a regression equation.
b. There are a number of analyses to do. First, using Age or Odometer Miles as an independent variable. When you
review these analyses, both result in significant relationships. However, Age has a slightly higher R^{2}. So I would select age as the first independent variable. The interpretation of the coefficient using age is bit more useful for practical use. That is, we can expect about an average of $\$ 600$ increase in maintenance costs for each additional year a bus ages. The results are:

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.708
R Square	0.501
Adjusted R Square	0.494
Standard Error	1658.097
Observations	80

ANOVA						
	$\boldsymbol{d f}$	SS	MS	\boldsymbol{F}	Significance \boldsymbol{F}	
Regression	1	215003471.845	215003471.845	78.203	0.000	
Residual	78	214444212.142	2749284.771			
Total	79	429447683.988				
	Coefficients	Standard Error	\boldsymbol{t}-Stat	\boldsymbol{p}-Value		
Intercept	337.297	511.372	0.660	0.511		
Age (years)	603.161	68.206	8.843	0.000		

We can also explore including the variable "miles since last maintenance" with Age. Your analysis will show that "miles since last maintenance" is not significantly related to costs.
Last, it is possible that maintenance costs are different for diesel versus gasoline engines. So, adding this variable to the analysis shows:

The results show that the engine type is statistically significant and increases the R^{2} to 92.2%. Now the practical interpretation of the analysis is that, on average, buses with gasoline engines cost about $\$ 3,190$ more to maintain. Also, the maintenance costs increase with bus age at an average of $\$ 644$ per year of bus age.
c. The normality conjecture appears realistic.

d. The plot of residuals versus predicted values shows the following. There are clearly patterns in the graph that indicate that the residuals do not follow the assumptions required for the tests of hypotheses.

Let's remember the scatter plot of costs versus age. The graph clearly shows the effect of engine type on costs. So there are essentially two regression equations depending on the type of engine.

So based on our knowledge of the data, let's create a residual plot of costs for each engine type.

The graphs show a much better distribution of residuals.

CHAPTER 15

1. a. H_{0} is rejected if $z>1.65$.
b. 1.09 , found by $z=(0.75-0.70) / \sqrt{(0.70 \times 0.30) / 100}$
c. H_{0} is not rejected.
2. Step 1: $H_{0}: \pi=0.10 \quad H_{1}: \pi \neq 0.10$

Step 2: The 0.01 significance level was chosen.
Step 3: Use the z-statistic as the binomial distribution can be approximated by the normal distribution as $n \pi=30>5$ and n $(1-\pi)=270>5$.
Step 4: Reject H_{0} if $z>2.326$.
Step 5:

$$
z=\frac{\left\{\left({ }^{63 / 300}\right)-0.10\right\}}{\sqrt{\left\{{ }^{0.10(0.90)} / 300\right\}}}=6.35,
$$

Reject H_{0}.
Step 6: We conclude that the proportion of carpooling cars on the Turnpike is not 10%.
5. a. $H_{0}: \pi \geq 0.90 \quad H_{1}: \pi<0.90$
b. H_{0} is rejected if $z<-1.28$.
c. -2.67 , found by $z=(0.82-0.90) / \sqrt{(0.90 \times 0.10) / 100}$
d. H_{0} is rejected. Fewer than 90% of the customers receive their orders in less than 10 minutes.
7. a. H_{0} is rejected if $z>1.65$.
b. 0.64 , found by $p_{c}=\frac{70+90}{100+150}$
c. 1.61 , found by

$$
z=\frac{0.70-0.60}{\sqrt{[(0.64 \times 0.36) / 100]+[(0.64 \times 0.36) / 150]}}
$$

d. H_{0} is not rejected.
9. a. $H_{0}: \pi_{1}=\pi_{2} \quad H_{1}: \pi_{1} \neq \pi_{2}$
b. H_{0} is rejected if $z<-1.96$ or $z>1.96$.
c. $p_{c}=\frac{24+40}{400+400}=0.08$
d. -2.09 , found by

$$
z=\frac{0.06-0.10}{\sqrt{[(0.08 \times 0.92) / 400]+[(0.08 \times 0.92) / 400]}}
$$

e. H_{0} is rejected. The proportion infested is not the same in the two fields.
11. $H_{0}: \pi_{d} \leq \pi_{r} \quad H_{1}: \pi_{d}>\pi_{r}$
H_{0} is rejected if $z>2.05$.

$$
\begin{aligned}
p_{c} & =\frac{168+200}{800+1,000}=0.2044 \\
z & =\frac{0.21-0.20}{\sqrt{\frac{(0.2044)(0.7956)}{800}+\frac{(0.2044)(0.7956)}{1,000}}}=0.52
\end{aligned}
$$

H_{0} is not rejected. We cannot conclude that a larger proportion of Democrats favor lowering the standards. p-value $=.3015$.
13. a. 3
b. 7.815
15. a. Reject H_{0} if $\chi^{2}>5.991$.
b. $\chi^{2}=\frac{(10-20)^{2}}{20}+\frac{(20-20)^{2}}{20}+\frac{(30-20)^{2}}{20}=10.0$
c. Reject H_{0}. The proportions are not equal.
17. H_{0} : The outcomes are the same; H_{1} : The outcomes are not the same. Reject H_{0} if $\chi^{2}>9.236$.

$$
\chi^{2}=\frac{(3-5)^{2}}{5}+\cdots+\frac{(7-5)^{2}}{5}=7.60
$$

Do not reject H_{0}. Cannot reject H_{0} that outcomes are the same.
19. H_{0} : There is no difference in the proportions.
H_{1} : There is a difference in the proportions.
Reject H_{0} if $\chi^{2}>15.086$.

$$
\chi^{2}=\frac{(47-40)^{2}}{40}+\cdots+\frac{(34-40)^{2}}{40}=3.400
$$

Do not reject H_{0}. There is no difference in the proportions.
21. a. Reject H_{0} if $\chi^{2}>9.210$.
b. $\chi^{2}=\frac{(30-24)^{2}}{24}+\frac{(20-24)^{2}}{24}+\frac{(10-12)^{2}}{12}=2.50$
c. Do not reject H_{0}.
23. H_{0} : Proportions are as stated; H_{1} : Proportions are not as stated. Reject H_{0} if $\chi^{2}>11.345$

$$
\chi^{2}=\frac{(50-25)^{2}}{25}+\cdots+\frac{(160-275)^{2}}{275}=115.22
$$

Reject H_{0}. The proportions are not as stated.
25.

Number of Clients	z-Values	Area	Found by	$\boldsymbol{f}_{\boldsymbol{e}}$
Under 30	Under -1.58	0.0571	$0.5000-0.4429$	2.855
30 up to 40	-1.58 up to -0.51	0.2479	$0.4429-0.1950$	12.395
40 up to 50	-0.51 up to 0.55	0.4038	$0.1950+0.2088$	20.19
50 up to 60	0.55 up to 1.62	0.2386	$0.4474-0.2088$	11.93
60 or more	1.62 or more	0.0526	$0.5000-0.4474$	2.63

The first and last class both have expected frequencies smaller than 5 . They are combined with adjacent classes.
H_{0} : The population of clients follows a normal distribution.
H_{1} : The population of clients does not follow a normal distribution. Reject the null if $\chi^{2}>5.991$.

Number of Clients	Area	$f_{\text {e }}$	f_{0}	$f_{\text {e }}-f_{\text {o }}$	$\left(f_{o}-f_{e}\right)^{2}$	$\left[\left(f_{o}-f_{e}\right)^{2}\right] / f_{e}$
Under 40	0.3050	15.25	16	-0.75	0.5625	0.0369
40 up to 50	0.4038	20.19	22	-1.81	3.2761	0.1623
50 or more	0.2912	14.56	12	2.56	6.5536	0.4501
Total	1.0000	50.00	50	0		0.6493

Since 0.6493 is not greater than 5.991, we fail to reject the null hypothesis. These data could be from a normal distribution.
27. H_{0} : There is no relationship between community size and section read. H_{1} : There is a relationship.
Reject H_{0} if $\chi^{2}>9.488$.

$$
\chi^{2}=\frac{(170-157.50)^{2}}{157.50}+\cdots+\frac{(88-83.62)^{2}}{83.62}=7.340
$$

Do not reject H_{0}. There is no relationship between community size and section read.
29. H_{0} : No relationship between error rates and item type.
H_{1} : There is a relationship between error rates and item type. Reject H_{0} if $\pi^{2}>9.21$.

$$
\chi^{2}=\frac{(20-14.1)^{2}}{14.1}+\cdots+\frac{(225-225.25)^{2}}{225.25}=8.033
$$

Do not reject H_{0}. There is not a relationship between error rates and item type.
31. a. $H_{0}: \pi=0.50 \quad H_{1}: \pi \neq 0.50$
b. Yes. Both $n \pi$ and $n(1-\pi)$ are equal to 25 and exceed 5 .
c. Reject H_{0} if z is not between -2.576 and 2.576 .
d. $z=\frac{\frac{36}{53}-0.5}{\sqrt{0.5(1-0.5) / 53}}=2.61$

We reject the null hypothesis.
e. Using a p-value calculator (rounding to three decimal places) or a z-table, the p-value is 0.009 , found by $2(0.5000-$ $0.4955)$. The data indicates that the National Football Conference is luckier than the American Conference in calling the flip of a coin.
33. $H_{0}: \pi \leq 0.60 \quad H_{1}: \pi>0.60$
H_{0} is rejected if $z>2.33$.
$z=\frac{.70-.60}{\sqrt{\frac{.60(.40)}{200}}}=2.89$
H_{0} is rejected. Ms. Dennis is correct. More than 60% of the accounts are more than 3 months old.
35. $H_{0}: \pi \leq 0.44 \quad H_{1}: \pi>0.44$
H_{0} is rejected if $z>1.65$.
$z=\frac{0.480-0.44}{\sqrt{(0.44 \times 0.56) / 1.000}}=2.55$
H_{0} is rejected. We conclude that there has been an increase in the proportion of people wanting to go to Europe.
37. $H_{0}: \pi \leq 0.20 \quad H_{1}: \pi>0.20$
H_{0} is rejected if $z>2.33$
$z=\frac{(56 / 200)-0.20}{\sqrt{(0.20 \times 0.80) / 200}}=2.83$
H_{0} is rejected. More than 20% of the owners move during a particular year. p-value $=0.5000-0.4977=0.0023$.
39. $H_{0}: \pi \geq 0.0008 \quad H_{1}: \pi<0.0008$
H_{0} is rejected if $z<-1.645$.
$z=\frac{0.0006-0.0008}{\sqrt{\frac{0.0008(0.9992)}{10,000}}}=-0.707 \quad H_{0}$ is not rejected.
These data do not prove there is a reduced fatality rate.
41. $H_{0}: \pi_{1} \leq \pi_{2} \quad H_{1}: \pi_{1}>\pi_{2}$

If $z>2.33$, reject H_{0}.

$$
\begin{aligned}
p_{c} & =\frac{990+970}{1,500+1,600}=0.63 \\
z & =\frac{.6600-.60625}{\sqrt{\frac{.63(.37)}{1,500}+\frac{.63(.37)}{1,600}}}=3.10
\end{aligned}
$$

Reject the null hypothesis. We can conclude the proportion of men who believe the division is fair is greater.
43. $H_{0}: \pi_{1} \leq \pi_{2} \quad H_{1}: \pi_{1}>\pi_{2} \quad H_{0}$ is rejected if $z>1.65$.

$$
\begin{aligned}
& p_{c}=\frac{.091+.085}{2}=.088 \\
& z=\frac{0.091-0.085}{\sqrt{\frac{(0.088)(0.912)}{5,000}+\frac{(0.088)(0.912)}{5,000}}}=1.059
\end{aligned}
$$

H_{0} is not rejected. There has not been an increase in the proportion calling conditions "good." The p-value is .1446 , found by $.5000-.3554$. The increase in the percentages will happen by chance in one out of every seven cases.
45. $H_{0}: \pi_{1}=\pi_{2} \quad H_{1}: \pi_{1} \neq \pi_{2}$
H_{0} is rejected if z is not between -1.96 and 1.96.

$$
\begin{aligned}
& p_{c}=\frac{100+36}{300+200}=.272 \\
& z=\frac{\frac{100}{300}-\frac{36}{200}}{\sqrt{\frac{(0.272)(0.728)}{300}+\frac{(0.272)(0.728)}{200}}}=3.775
\end{aligned}
$$

H_{0} is rejected. There is a difference in the replies of the sexes.
47. $H_{0}: \pi_{s}=0.50, \pi_{r}=\pi_{e}=0.25$
H_{1} : Distribution is not as given above.
$d f=2$. Reject H_{0} if $\chi^{2}>4.605$.

Turn	$\boldsymbol{f}_{\boldsymbol{o}}$	$\boldsymbol{f}_{\boldsymbol{e}}$	$\boldsymbol{f}_{\mathbf{o}}-\boldsymbol{f}_{\boldsymbol{e}}$	$\left(\boldsymbol{f}_{\boldsymbol{o}}-\boldsymbol{f}_{\mathrm{e}}\right)^{2} / \boldsymbol{f}_{\boldsymbol{e}}$
Straight	112	100	12	1.44
Right	48	50	-2	0.08
Left	40	$\frac{50}{20}$	-10	$\underline{2.00}$
\quad Total	200	200		3.52

H_{0} is not rejected. The proportions are as given in the null hypothesis.
49. H_{0} : There is no preference with respect to TV stations.
H_{1} : There is a preference with respect to TV stations.
$d f=3-1=2 . H_{0}$ is rejected if $\chi^{2}>5.991$.

TV Station	$f_{\text {o }}$	$f_{\text {e }}$	$f_{0}-f_{e}$	$\left(f_{o}-f_{e}\right)^{2}$	$\left(f_{o}-f_{e}\right)^{2} / f_{e}$
WNAE	53	50	3	9	0.18
WRRN	64	50	14	196	3.92
WSPD	33	50	-17	289	5.78
	150	150	0		9.88

H_{0} is rejected. There is a preference for TV stations.
51. $H_{0}: \pi_{n}=0.21, \pi_{m}=0.24, \pi_{s}=0.35, \pi_{w}=0.20$
H_{1} : The distribution is not as given.
Reject H_{0} if $\chi^{2}>11.345$.

Region	$\boldsymbol{f}_{\boldsymbol{o}}$	$\boldsymbol{f}_{\boldsymbol{e}}$	$\boldsymbol{f}_{\boldsymbol{o}}-\boldsymbol{f}_{\boldsymbol{e}}$	$\left(\boldsymbol{f}_{\boldsymbol{o}}-\boldsymbol{f}_{\mathrm{e}}\right)^{\mathbf{2}} / \boldsymbol{f}_{\boldsymbol{e}}$
Northeast	68	84	-16	3.0476
Midwest	104	96	8	0.6667
South	155	140	15	1.6071
West	73	$\underline{80}$	$\underline{-7}$	$\underline{0.6125}$
Total	400	400	0	5.9339

H_{0} is not rejected. The distribution of order destinations reflects the population.
53. H_{0} : The proportions are the same.
H_{1} : The proportions are not the same.
Reject H_{0} if $\chi^{2}>16.919$.

$\boldsymbol{f}_{\mathrm{o}}$	$\boldsymbol{f}_{\mathrm{e}}$	$\boldsymbol{f}_{\mathrm{o}}-\boldsymbol{f}_{\mathrm{e}}$	$\left(\boldsymbol{f}_{\mathrm{o}}-\boldsymbol{f}_{\mathrm{e}}\right)^{\mathbf{2}}$	$\left(\boldsymbol{f}_{\mathrm{o}}-\boldsymbol{f}_{\mathrm{e}}\right)^{\mathbf{2}} / \boldsymbol{f}_{\mathrm{e}}$
44	28	16	256	9.143
32	28	4	16	0.571
23	28	-5	25	0.893
27	28	-1	1	0.036
23	28	-5	25	0.893
24	28	-4	16	0.571
31	28	3	9	0.321
27	28	-1	1	0.036
28	28	0	0	0.000
21	28	-7	49	$\underline{1.750}$
				14.214

Do not reject H_{0}. The digits are evenly distributed.
55.

Hourly Wage	f	M	fM	M - \boldsymbol{x}	$(M-X)^{2}$	$f(M-x)^{2}$
\$5.50 up to 6.50	20	6	120	-2.222	4.938	98.8
6.50 up to 7.50	24	7	168	-1.222	1.494	35.9
7.50 up to 8.50	130	8	1040	-0.222	0.049	6.4
8.50 up to 9.50	68	9	612	0.778	0.605	41.1
9.50 up to 10.50	28	10	280	1.778	3.161	88.5
Total	270		2220			270.7

The sample mean is 8.222 , found by $2,220 / 270$.
The sample standard deviation is 1.003 , found as the square root of 270.7/269.
H_{0} : The population of wages follows a normal distribution.
H_{1} : The population of hourly wages does not follow a normal distribution.
Reject the null if $\chi^{2}>4.605$.

Wage	z-values	Area	Found by	$f_{\text {e }}$	$f_{\text {o }}$	$f_{e}-f_{\text {o }}$	$\left(f_{o}-f_{e}\right)^{2}$	$\left[\left(f_{o}-f_{e}\right)^{2}\right] / f_{e}$
Under \$6.50	Under -1.72	0.0427	$\begin{aligned} & 0.5000- \\ & 0.4573 \end{aligned}$	11.529	20	-8.471	71.7578	6.2241
$\begin{aligned} & 6.50 \text { up } \\ & \text { to } 7.50 \end{aligned}$	$\begin{aligned} & -1.72 \text { up } \\ & \text { to }-0.72 \end{aligned}$	0.1931	$\begin{aligned} & 0.4573- \\ & 0.2642 \end{aligned}$	52.137	24	28.137	791.6908	15.1848
$\begin{aligned} & 7.50 \text { up } \\ & \text { to } 8.50 \end{aligned}$	$\begin{aligned} & -0.72 \text { up } \\ & \text { to } 0.28 \end{aligned}$	0.3745	$\begin{aligned} & 0.2642+ \\ & 0.1103 \end{aligned}$	101.115	130	-28.885	834.3432	8.2514
$\begin{aligned} & 8.50 \text { up } \\ & \text { to } 9.50 \end{aligned}$	$\begin{aligned} & 0.28 \text { up } \\ & \text { to } 1.27 \end{aligned}$	0.2877	$\begin{aligned} & 0.3980- \\ & 0.1103 \end{aligned}$	77.679	68	9.679	93.6830	1.2060
$9.50 \text { or }$ more	$1.27 \text { or }$ more	0.1020	$\begin{aligned} & 0.5000- \\ & 0.3980 \end{aligned}$	27.54	28	-0.46	0.2116	0.0077
Total		1.0000		270	270	0		30.874

Since 30.874 is greater than 4.605 , we reject the null hypothesis not from a normal distribution.
57. H_{0} : Gender and attitude toward the deficit are not related. H_{1} : Gender and attitude toward the deficit are related. Reject H_{0} if $\chi^{2}>5.991$.

$$
\begin{aligned}
\chi^{2}= & \frac{(244-292.41)^{2}}{292.41}+\frac{(194-164.05)^{2}}{164.05} \\
& +\frac{(68-49.53)^{2}}{49.53}+\frac{(305-256.59)^{2}}{256.59} \\
& +\frac{(114-143.95)^{2}}{143.95}+\frac{(25-43.47)^{2}}{43.47}=43.578
\end{aligned}
$$

Since $43.578>5.991$, you reject H_{0}. A person's position on the deficit is influenced by his or her gender.
59. H_{0} : Whether a claim is filed and age are not related. H_{1} : Whether a claim is filed and age are related. Reject H_{0} if $\chi^{2}>7.815$.

$$
\chi^{2}=\frac{(170-203.33)^{2}}{203.33}+\cdots+\frac{(24-35.67)^{2}}{35.67}=53.639
$$

Reject H_{0}. Age is related to whether a claim is filed.
61. $H_{0}: \pi_{B L}=\pi_{O}=.23, \pi_{Y}=\pi_{G}=.15, \pi_{B R}=\pi_{R}=.12$.
H_{1} : The proportions are not as given. Reject H_{0} if $\chi^{2}>15.086$.

Color	$\boldsymbol{f}_{\boldsymbol{o}}$	$\boldsymbol{f}_{\boldsymbol{e}}$	$\left(\boldsymbol{f}_{\boldsymbol{o}}-\boldsymbol{f}_{\mathrm{e}}\right)^{\mathbf{2}} / \boldsymbol{f}_{\mathrm{e}}$
Blue	12	16.56	1.256
Brown	14	8.64	3.325
Yellow	13	10.80	0.448
Red	14	8.64	3.325
Orange	7	16.56	5.519
Green	$\mathbf{1 2}$	10.80	$\underline{0.133}$
\quad Total	$\mathbf{7 2}$		$\mathbf{1 4 . 0 0 6}$

Do not reject H_{0}. The color distribution agrees with the manufacturer's information.
63. H_{0} : Salary and winning are not related.
H_{1} : Salary and winning are related.
Reject H_{0} if $\chi^{2}>3.841$ with 1 degree of freedom.

Salary			
Winning	Lower half	Top half	Total
No	10	4	14
Yes	5	11	16
Total	15	15	

$$
\chi^{2}=\frac{(10-7)^{2}}{7}+\frac{(4-7)^{2}}{7}+\frac{(5-8)^{2}}{8}+\frac{(11-8)^{2}}{8}=4.82
$$

Reject H_{0}. Conclude that salary and winning are related.

CHAPTER 16

1. a. If the number of pluses (successes) in the sample is 9 or more, reject H_{0}.
b. Reject H_{0} because the cumulative probability associated with nine or more successes (.073) does not exceed the significance level (.10).
2. a. $H_{0}: \pi \leq .50 ; H_{1}: \pi>.50 ; n=10$
b. H_{0} is rejected if there are nine or more plus signs. A " + " represents a loss.
c. Reject H_{0}. It is an effective program because there were nine people who lost weight.
3.

a. H_{0} : median $\$ 81,500 \quad H_{1}$: median $>\$ 81,500$
b. Reject H_{0} if 12 or more earned than $\$ 81,500$.
c. 13 of the 18 chiropractors earned more than $\$ 81,500$ so reject H_{0}. The results indicate the starting salary for chiropractors is more than $\$ 81,500$.
7.

Couple	Difference	Rank
1	550	7
2	190	5
3	250	6
4	-120	3
5	-70	1
6	130	4
7	90	2

Sums: $-4,+24$. So $T=4$ (the smaller of the two sums). From Appendix B.8, .05 level, one-tailed test, $n=7$, the critical value is 3. Since the T of $4>3$, do not reject H_{0} (one-tailed test). There is no difference in square footage. Professional couples do not live in larger homes.
9. a. H_{0} : The production is the same for the two systems. H_{1} : Production using the new procedure is greater.
b. H_{0} is rejected if $T \leq 21, n=13$.
c. The calculations for the first three employees are:

Employee	Old	New	\boldsymbol{d}	Rank	$\boldsymbol{R}^{\mathbf{1}}$	$\boldsymbol{R}^{\mathbf{2}}$
A	60	64	4	6	6	
B	40	52	12	12.5	12.5	
C	59	58	-1	2		2

The sum of the negative ranks is 6.5 . Since 6.5 is less than $21, H_{0}$ is rejected. Production using the new procedure is greater.
11. H_{0} : The distributions are the same. H_{1} : The distributions are not the same. Reject H_{0} if $z, 21.96$ or $z>1.96$.

A		B	
Score	Rank	Score	Rank
38	4	26	1
45	6	31	2
56	9	35	3
57	10.5	42	5
61	12	51	7
69	14	52	8
70	15	57	10.5
79	$\frac{16}{86.5}$	62	$\underline{13}$
			49.5

$z=\frac{86.5-\frac{8(8+8+1)}{2}}{\sqrt{\frac{8(8)(8+8+1)}{12}}}=1.943$
H_{0} is not rejected. There is no difference in the two populations.
13. H_{0} : The distributions are the same. H_{1} : The distribution of Campus is to the right. Reject H_{0} if $z>1.65$.

Campus		Online	
Age	Rank		Age
Rank			
26	6	28	8
42	16.5	16	1
65	22	42	16.5
38	13	29	9.5
29	9.5	31	11
32	12	22	3
59	21	50	20
42	16.5	42	16.5
27	7	23	4
41	14	25	5
46	19		94.5
18	2		
	158.5		

$$
z=\frac{158.5-\frac{12(12+10+1)}{2}}{\sqrt{\frac{12(10)(12+10+1)}{12}}}=1.35
$$

H_{0} is not rejected. There is no difference in the distributions.
15. ANOVA requires that we have two or more populations, the data are interval- or ratio-level, the populations are normally distributed, and the population standard deviations are equal. Kruskal-Wallis requires only ordinal-level data, and no assumptions are made regarding the shape of the populations.
17. a. H_{0} : The three population distributions are equal.
H_{1} : Not all of the distributions are the same.
b. Reject H_{0} if $H>5.991$.
c.

Sample 1 Rank	Sample 2 Rank	Sample 3 Rank
8	5	1
11	6.5	2
14.5	6.5	3
14.5	10	4
$\frac{16}{64}$	$\underline{13}$	$\underline{9}$
	$\underline{53}$	$\mathbf{1 9}$

$H=\frac{12}{16(16+1)}\left[\frac{(64)^{2}}{5}+\frac{(53)^{2}}{6}+\frac{(19)^{2}}{5}\right]-3(16+1)$
$=59.98-51=8.98$
d. Reject H_{0} because $8.98>5.991$. The three distributions are not equal.
19. H_{0} : The distributions of the lengths of life are the same. H_{1} : The distributions of the lengths of life are not the same. H_{0} is rejected if $H>9.210$.

Salt		Fresh		Others	
Hours	Rank	Hours	Rank	Hours	Rank
167.3	3	160.6	1	182.7	13
189.6	15	177.6	11	165.4	2
177.2	10	185.3	14	172.9	7
169.4	6	168.6	4	169.2	5
180.3	12	176.6	9	174.7	8
	46		39		35

$$
H=\frac{12}{15(16)}\left[\frac{(46)^{2}}{5}+\frac{(39)^{2}}{5}+\frac{(35)^{2}}{5}\right]-3(16)=0.62
$$

H_{0} is not rejected. There is no difference in the three distributions.
21. a.

b. $r_{s}=1-\frac{6 \Sigma d^{2}}{n\left(n^{2}-1\right)}=1-\frac{6(845)}{20\left(20^{2}-1\right)}=.635$
c. H_{0} : No correlation among the ranks H_{1} : A positive correlation among the ranks
Reject H_{0} if $t>1.734$.
$t=.635 \sqrt{\frac{20-2}{1-.635^{2}}}=2.489$
H_{0} is rejected. We conclude the correlation in population among the ranks is positive. The Nielson rankings and the PST zone composite rank are significantly, positively related.
23.

Representative	Sales	Rank	Training Rank	\boldsymbol{d}	$\boldsymbol{d}^{\mathbf{2}}$
1	319	8	8	0	0
2	150	1	2	1	1
3	175	2	5	3	9
4	460	10	10	0	0
5	348	9	7	-2	4
6	300	6.5	1	5.5	30.25
7	280	5	6	1	1
8	200	4	9	5	25
9	190	3	4	1	1
10	300	6.5	3	-3.5	$\underline{12.25}$
					83.50

a. $r_{s}=1-\frac{6(83.5)}{10\left(10^{2}-1\right)}=0.494$

A moderate positive correlation
b. H_{0} : No correlation among the ranks. H_{1} : A positive correlation among the ranks. Reject H_{0} if $t>1.860$.

$$
t=0.494 \sqrt{\frac{10-2}{1-(0.494)^{2}}}=1.607
$$

H_{0} is not rejected. The correlation in population among the ranks could be 0 .
25. $H_{0}: \pi=.50 . H_{1}: \pi=.50$. Use a software package to develop the binomial probability distribution for $n=19$ and $\pi=.50 . H_{0}$ is rejected if there are either 5 or fewer " + " signs, or 14 or more. The total of 12 " + " signs falls in the acceptance region. H_{0} is not rejected. There is no preference between the two shows.
27. $H_{0}: \pi=.50 H_{1}: \pi=.50$
H_{0} is rejected if there are 12 or more or 3 or fewer plus signs. Because there are only 8 plus signs, H_{0} is not rejected. There is no preference with respect to the two brands of components.
29. a. $H_{0}:=0.50 \quad H_{1}: 0.50 \quad \mathrm{n}=22 ; 2$ were indifferent, so $\mathrm{n}=20$. 5 preferred pulp; 15 preferred no pulp.
b. As a two-tailed test, Reject if 5 or less preferred pulp, or 14 or more preferred pulp.
c. Reject H_{0}. There is a difference in the preference for the two types of orange juice.
31. H_{0} : Rates are the same; H_{1} : The rates are not the same. H_{0} is rejected if $H>5.991$. $H=.082$. Do not reject H_{0}.
33. H_{0} : The populations are the same. H_{1} : The populations differ. Reject H_{0} if $H>7.815 . H=14.30$. Reject H_{0}.
35. $r_{s}=1-\frac{6(78)}{12\left(12^{2}-1\right)}=0.727$
H_{0} : There is no correlation between the rankings of the coaches and of the sportswriters.
H_{1} : There is a positive correlation between the rankings of the coaches and of the sportswriters. Reject H_{0} if $t>1.812$.

$$
t=0.727 \sqrt{\frac{12-2}{1-(.727)^{2}}}=3.348
$$

H_{0} is rejected. There is a positive correlation between the sportswriters and the coaches.
37. a. H_{0} : There is no difference in the distributions of the selling prices in the five townships.
H_{1} : There is a difference in the distributions of the selling prices of the five townships.
H_{0} is rejected if H is greater than 9.488. The computed value of H is 2.70 , so the null hypothesis is not rejected. The sample data does not suggest a difference in the distributions of selling prices.
b. H_{0} : There is no difference in the distributions of the selling prices depending on the number of bedrooms.
H_{1} : There is a difference in the distributions of the selling prices depending on the number of bedrooms.
H_{0} is rejected if H is greater than 9.488. The computed value of H is 75.71 , so the null hypothesis is rejected. The sample data indicates there is a difference in the distributions of selling prices based on the number of bedrooms
c. H_{0} : There is no difference in the distributions of FICO scores depending on the type of mortgage the occupant has on the home.
H_{1} : There is a difference in the distributions of FICO scores depending on the type of mortgage the occupant has on the home.
H_{0} is rejected if H is greater than 3.841. The computed value of H is 41.04 , so the null hypothesis is rejected. The sample data suggests a difference in the distributions of the FICO scores. The data shows that home occupants with lower FICO scores tended to use adjustable rate mortgages.
39. a. H_{0} : The distributions of the maintenance costs are the same for all capacities.
H_{1} : The distributions of the costs are not the same.
H_{0} is rejected if $H>7.815$, from χ^{2} with 3 degrees of freedom.
$H=\frac{12}{80(81)}\left[\frac{(132)^{2}}{3}+\frac{(501)^{2}}{11}+\frac{(349)^{2}}{11}+\frac{(2258)^{2}}{55}\right]-3(81)=2.186$
Fail to reject H_{0}. There is no difference in the maintenance cost for the four bus capacities.
b. H_{0} : The distributions of maintenance costs by fuel type are the same.
H_{1} : The distributions are different.
Reject H_{0} if $z<-1.96$ or $z>1.96$.

$$
z=\frac{1693-\frac{53(53+27+1)}{2}}{\sqrt{\frac{(53)(27)(53+27+1)}{12}}}=-4.614
$$

We reject reject H_{0} and conclude that maintenance costs are different for diesel and gasoline fueled buses.
c. H_{0} : The distributions of the maintenance costs are the same for the three bus manufacturers.
H_{1} : The distributions of the costs are not the same.
H_{0} is rejected if $H>5.991$, from χ^{2} with 2 degrees of freedom.

$$
H=\frac{12}{80(81)}\left[\frac{(414)^{2}}{8}+\frac{(1005)^{2}}{25}+\frac{(1821)^{2}}{47}\right]-3(81)=2.147
$$

H_{0} is not rejected. There may be no difference in the maintenance cost for the three different manufacturers. The distributions could be the same.

CHAPTER 17

1.

Year	Loans $(\$$ millions $)$	Index $($ base $=\mathbf{2 0 1 0})$
2010	55,177	100.0
2011	65,694	119.1
2012	83,040	150.5
2013	88,378	160.2
2014	97,420	176.6
2015	98,608	178.7
2016	101,364	183.7
2017	110,527	200.3
2018	116,364	210.9

3. The mean sales for the earliest 3 years is $\$(486.6+506.8+$ $522.2) / 3$ or $\$ 505.2$.

2017: 90.4, found by (456.6/505.2) (100)
2018: 85.8, found by (433.3/505.2) (100)
Net sales decreased by 9.6% and 14.2% from the 2009-2010 period to 2017 and 2018, respectively.
5. a. $P_{t}=\frac{3.35}{2.49}(100)=134.54$
$P_{s}=\frac{4.49}{3.29}(100)=136.47$
$P_{c}=\frac{4.19}{1.59}(100)=263.52$
$P_{a}=\frac{2.49}{1.79}(100)=139.11$
b. $\quad P=\frac{14.52}{9.16}(100)=158.52$
c. $P=\frac{\$ 3.35(6)+4.49(4)+4.19(2)+2.49(3)}{\$ 2.49(6)+3.29(4)+1.59(2)+1.79(3)}(100)=147.1$
d. $P=\frac{\$ 3.35(6)+4.49(5)+4.19(3)+2.49(4)}{\$ 2.49(6)+3.29(5)+1.59(3)+1.79(4)}(100)=150.2$
e. $I=\sqrt{(147.1)(150.2)}=148.64$
7. a. $P_{w}=\frac{0.10}{0.07}(100)=142.9 \quad P_{C}=\frac{0.03}{0.04}(100)=75.0$
$P_{S}=\frac{0.15}{0.15}(100)=100 \quad P_{H}=\frac{0.10}{0.08}(100)=125.0$
b. $P=\frac{0.38}{0.34}(100)=111.8$
c.
$P=\frac{0.10(17,000)+0.03(125,000)+0.15(40,000)+0.10(62,000)}{0.07(17,000)+0.04(125,000)+0.15(40,000)+0.08(62,000)} \times$ $(100)=102.92$
d.
$P=\frac{0.10(20,000)+0.03(130,000)+0.15(42,000)+0.10(65,000)}{0.07(20,000)+0.04(130,000)+0.15(42,000)+0.08(65,000)} \times$
$(100)=103.32$
e. $I=\sqrt{102.92(103.32)}=103.12$
9.

11. a. $I=\frac{6.8}{5.3}(0.20)+\frac{362.26}{265.88}(0.40)+\frac{125.0}{109.6}(0.25)$

$$
+\frac{622,864}{529,917}(0.15)=1.263
$$

Index is 126.3.
b. Business activity increased 26.3% from 2000 to 2018.
13. The real income is $X=(\$ 86,829) / 2.51107=\$ 34,578$.
"Real" salary increased $\$ 34,578-\$ 19,800=\$ 17,778$.
15.

Year	Tinora	Tinora Index	National Index
2000	$\$ 28,650$	100.0	100
2010	$\$ 33,972$	118.6	122.5
2018	$\$ 37,382$	130.5	136.9
The Tinora teachers received smaller increases than the national average.			

17.

Year	Domestic Sales (base $=$ 2010
2010	100.0
2011	43.8
2012	101.3
2013	108.4
2014	118.2
2015	121.2
2016	128.4
2017	135.4
2018	142.3
Compared to 2010, domestic sates	
are 42.3\% higher.	

19.

Year	International Sales (base $=\mathbf{2 0 1 0}$)
2010	100.0
2011	99.9
2012	116.4
2013	122.7
2014	123.1
2015	107.0
2016	106.1
2017	113.9
2018	123.6
Compared to 2010, international	
sales are 23.6\% higher.	

21.

Year	Employees (base $=$ 2010 $)$
2010	100.0
2011	103.4
2012	111.9
2013	112.4
2014	111.0
2015	111.5
2016	110.9
2017	117.5
2018	118.5
Compared to 2010, the number	
of employees is 18.5 higher.	

23.

Year	Revenue (millions \$)	Simple Index, Revenue (base = 2013)
2013	113,245	100.0
2014	117,184	103.5
2015	117,386	103.7
2016	123,693	109.2
2017	122,092	107.8
2018	125,615	110.9
Compared to 2013, revenue increased 10.9%		

25.

Year	Employees (thousands)	Simple Index, Employees (base $=$ 2013)
2013	307	100.0
2014	305	99.3
2015	333	108.5
2016	295	96.1
2017	313	102.0
2018	283	92.2
Compared to 2013, employees decreased 7.8\%.		

27. $P_{m a}=\frac{2.00}{0.81}(100)=246.91 \quad P_{s h}=\frac{1.88}{0.84}(100)=223.81$
$P_{m i}=\frac{2.89}{1.44}(100)=200.69 \quad P_{p o}=\frac{3.99}{2.91}(100)=137.11$
28. $\quad P=\frac{\$ 2.00(18)+1.88(5)+2.89(70)+3.99(27)}{\$ 0.81(18)+0.84(5)+1.44(70)+2.91(27)}(100)=179.37$
29. $I=\sqrt{179.37(178.23)}=178.80$
30. $P_{R}=\frac{0.60}{0.50}(100)=120 \quad P_{S}=\frac{0.90}{1.20}(100)=75.0$ $P_{w}=\frac{1.00}{0.85}(100)=117.65$
31. $P=\frac{0.60(320)+0.90(110)+1.00(230)}{0.50(320)+1.20(110)+0.85(230)}(100)=106.87$
32. $P=\sqrt{(106.87)(106.04)}=106.45$
33. $\quad P_{C}=\frac{0.05}{0.06}(100)=83.33 \quad P_{C}=\frac{0.12}{0.10}(100)=120$ $P_{P}=\frac{0.18}{0.20}(100)=90 \quad P_{E}=\frac{.015}{0.15}(100)=100$
34. $P=\frac{0.05(2,000)+0.12(200)+0.18(400)+0.15(100)}{0.06(2,000)+0.10(200)+0.20(400)+0.15(100)}(100)$ $=89.79$
35. $I=\sqrt{(89.79)(91.25)}=90.52$
36. $\quad P_{A}=\frac{.86}{.82}(100)=104.9$

$$
P_{N}=\frac{2.99}{4.37}(100)=68.4
$$

$P_{P E T}=\frac{58.15}{71.21}(100)=81.7 \quad P_{P L}=\frac{1292.53}{1743.6}(100)=74.1$
47. $P_{\text {Laspeyres }}=$

$$
\begin{aligned}
& \frac{.86(1000)+2.99(5000)+58.15(60000)+1292.53(500)}{.82(1000)+4.37(5000)+71.21(60000)+1743.60(500)}(100) \\
& =80.34
\end{aligned}
$$

49. $I=\sqrt{(80.34)(80.14)}=80.24$
50. $I=100\left[\frac{1971.0}{1159.0}(0.20)+\frac{91}{87}(0.10)+\frac{114.7}{110.6}(0.40)\right.$

$$
\left.+\frac{1501000}{1214000}(0.30)\right]=123.05
$$

The economy is up 23.05 percent from 1996 to 2016.
53. February: $I=100\left[\frac{6.8}{8.0}(0.40)+\frac{23}{20}(0.35)+\frac{303}{300}(0.25)\right]$

$$
=99.50
$$

March: $\quad \begin{aligned} I & =100\left[\frac{6.4}{8.0}(0.40)+\frac{21}{20}(0.35)+\frac{297}{300}(0.25)\right] \\ & =93.50\end{aligned}$
55. For 2006: $\$ 1,495,327$, found by $\$ 2,400,000 / 1.605$ For 2018: $\$ 1,715,686$, found by $\$ 3,500,000 / 2.040$

CHAPTER 18

1. Any graphs similar to the following:

2. The irregular component is the randomness in a time series that cannot be described by any trend, seasonal, or cyclical pattern. The irregular component is used to estimate forecast error.
3. a. The graph shows a stationary pattern.

b. \& c.

Period	Demand	3-Month SMA	Absolute Errors
1	104		
2	132		
3	143		10.67
4	137	126.33	8.67
5	146	137.33	8
6	150	142	43.33
7	101	144.33	6.33
8	126	132.33	9.67
9	116	125.67	0.67
10	115	114.33	
11		119	$M A D=12.48$

d. The forecast demand for period 11 is 119.
e. The MAD of 12.48 is the reported measure of error. So, the forecast is 119 ± 12.48.
7. a. The graph shows a stationary pattern.

Demand

b.-d.

Period	Demand	4-Month SMA	6-Month SMA	4-Month Absolute Error	6-Month Absoluate Error
1	126				
2	112				
3	135				
4	145			23.50	
5	106	129.50		23.50	11.20
6	101	124.50		10.25	19.20
7	132	121.75	120.80	20.00	16.70
8	141	121.00	121.80	10.00	8.50
9	110	120.00	126.70	10.00	
10	131	121.00	122.50		16.21
11		128.50	120.20		13.90
				4-month MAD	

e. The 6-month moving average MAD of 13.90, is less than the 4 -month MAD of 16.21. This is one reason to prefer using the 6-month rather than the 4-month moving average.
9. a. The graph shows a stationary pattern.

b. \& c.

	Alpha Period Demand	$\mathbf{0 . 3}$ Exp Smooth	Error	Absolute Error
1	104			
2	132	104	28	28
3	143	112.4	30.6	30.6
4	137	121.6	15.4	15.4
5	146	126.2	19.8	19.8
6	150	132.1	17.9	17.9
7	101	137.5	-36.5	36.5
8	126	126.6	-0.6	0.6
9	116	126.4	-10.4	10.4
10	115	123.3	-8.3	8.3
11		120.8		18.61

d. Period 11 forecast $=120.80$
e. The MAD of 18.61 is the reported measure of error. So, the forecast is 120.8 ± 18.61.
11. a. The graph shows a stationary pattern.
b.

	Alpha Demand	$\mathbf{0 . 3 5}$ Exp Smooth	Error	Absolute Error	
1	126				
2	112	126.00	-14.00	14.00	
3	135	121.10	13.90	13.90	
4	145	125.97	19.04	19.04	
5	106	132.63	-26.63	26.63	
6	101	123.31	-22.31	22.31	
7	132	115.50	16.50	16.50	
8	141	121.28	19.73	19.73	
9	110	128.18	-18.18	18.18	
10	131	121.82	9.18	9.18	
11		125.03	MAD $=17.72$		

c.

	Alpha Period Demand	$\mathbf{0 . 8 5}$ Exp Smooth	Error	Absolute Error	
1	126				
2	112	126.00	-14.00	14.00	
3	135	114.10	20.90	20.90	
4	145	131.87	13.14	13.14	
5	106	143.03	-37.03	37.03	
6	101	111.55	-10.55	10.55	
7	132	102.58	29.42	29.42	
8	141	127.59	13.41	13.41	
9	110	138.99	-28.99	28.99	
10	131	114.35	16.65	16.65	
11		128.50		$\mathrm{MAD}=20.45$	

d. For an alpha of. $35, \mathrm{MAD}=17.72$.

For an alpha of $85, \mathrm{MAD}=20.45$
e. Because it has the lower measure of error (MAD), choose exponential smoothing with alpha $=.35$.
13. a

b. The graph shows a negative time series trend in sales.
c. A trend model is appropriate because we want to estimate the decreasing change in sales per time period.
d. Based on the regression analysis, the trend equation is Sales $=1062.86-36.24$ (time period); sales are declining at a historical rate of 36.24 for each increment of one time period. Based on the MAD, the average forecast error for this model is 111.15 .

Period	Sales	Predicted Sales	Absolute Error
1	1001	1026.62	25.62
2	1129	990.38	138.62
3	841	954.15	113.15
4	1044	917.91	126.09
5	1012	881.67	130.33
6	703	845.44	142.44
7	682	809.20	127.20
8	712	772.97	60.97
9	646	736.73	90.73
10	686	700.49	14.49
11	909	664.26	244.74
12	469	628.02	159.02
13	566	591.78	25.78
14	488	555.55	67.55
15	688	519.31	168.69
16	675	483.07	191.93
17	303	446.84	143.84
18	381	410.60	29.60
			MAD $=111.15$

e. Sales are declining at a historical rate of 36.24 for each increment of one time period.
f. Sales (19) $=1062.86-36.24(19)=374.37$

Sales $(20)=1062.86-36.24(20)=338.13$
Sales $(21)=1062.86-36.24(21)=301.89$
The MAD or error associated with each forecast is 111.15.
15. a.

Annual U.S. Grocery Sales (millions \$)

b. The graph shows a positive time series trend in grocery sales.
c. A trend model is appropriate because we want to estimate the increasing change in sales per time period.
d. Predicted annual U.S. grocery sales $=-30,990,548.25+$ 15,682.503 (year). The forecast error computed with the MAD is $4,373.15$.

Period	Sales	Predicted Sales	Absolute Error	
2008	511,222	$499,917.84$	$11,304.16$	
2009	510,033	$515,600.34$	$5,567.34$	
2010	520,750	$531,282.84$	$10,532.84$	
2011	547,476	$546,965.35$	510.65	
2012	563,645	$562,647.85$	997.15	
2013	574,547	$578,330.35$	$3,783.35$	
2014	599,603	$594,012.85$	$5,590.15$	
2015	613,159	$609,695.36$	$3,463.64$	
2016	625,295	$625,377.86$	82.86	
2017	639,161	$641,060.36$	$1,899.36$	
		MAD $=4,373.15$		

e. Sales are increasing at a historical rate of $\$ 15,682.503$ million per year.
f. Annual U.S. grocery sales $(2018)=-30,990,548.25+$ 15,682.503 (2018) $=\$ 656,742.87$ (millions).
Annual U.S. grocery sales $(2019)=-30,990,548.25+15,68$ 2.503 (2019) $=\$ 672,425.37$ (millions).

Annual U.S. grocery sales $(2020)=-30,990,548.25+15,68$ 2.503 (2020) = \$688,107.87 (millions).

The forecast error associated with each forecast is 4,373.15.
17. a. The graph of residuals does not show evidence of a pattern or autocorrelation.

b.

Period	Sales	Forecast	Residuals	Lagged Residuals	Squared Difference	Squared Residuals
1	1001	1026.620	-25.620			656.38
2	1129	990.384	138.616	-25.620	26973.57	19214.52
3	841	954.147	-113.147	138.616	63384.95	12802.30
4	1044	917.911	126.089	-113.147	57234.02	15898.46
5	1012	881.675	130.325	126.089	17.95	16984.72
6	703	845.438	-142.438	130.325	74400.02	20288.66
7	682	809.202	-127.202	-142.438	232.15	16180.33
8	712	772.966	-60.966	-127.202	4387.25	3716.80
9	646	736.729	-90.729	-60.966	885.88	8231.80
10	686	700.493	-14.493	-90.729	5811.98	210.05
11	909	664.257	244.743	-14.493	67203.47	59899.32
12	469	628.020	-159.020	244.743	163025.10	25287.45
13	566	591.784	-25.784	-159.020	17751.92	664.81
14	488	555.548	-67.548	-25.784	1744.20	4562.68
15	688	519.311	168.689	-67.548	55807.60	28455.87
16	675	483.075	191.925	168.689	539.93	36835.21
17	303	446.839	-143.839	191.925	112737.24	20689.56
18	381	410.602	-29.602	-143.839	13049.94	876.30
				Column sums:	665187.17	291455.22
					$d=$	2.282
					autocorrelation	d table values: $1.16,1.39$

c. The d-test statistic is 2.282. It is larger than the upper d-critical value of 1.39. Therefore, fail to reject the null hypothesis of "no autocorrelation" and conclude that there is no autocorrelation in the data. We can use the results of the hypothesis tests associated with the regression analysis.
19. a.

Quarterly Sales

b. The quarterly time series shows two patterns, negative trend and seasonality. The seasonality is indicated with quarters 3 and 4 always with high sales, and quarters 1 and 2 always with low sales
c. A trend model is appropriate because we want to estimate the decreasing change in sales per quarter. A model with seasonal indexes is appropriate because we want to quantify the seasonal effects for each quarter.
d. e.

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.262
R Square	0.069
Adjusted R Square	0.002
Standard Error	182.671
Observations	16

ANOVA						
	$\boldsymbol{d f}$	SS	MS	\boldsymbol{F}	\boldsymbol{p}-Value	
	Regression	1	34552.224	34552.224	1.035	0.326
Residual	14	467162.213	33368.730			
Total	15	501714.438				
						Coefficients
	Standard Error	\boldsymbol{t}-Stat	\boldsymbol{p}-Value			
Intercept	1041.875	95.794	10.876	0.000		
period	-10.081	9.907	-1.018	0.326		

Period	Quarter	Sales	Trend	Index	Forecast	Absolute Error	
1	1	812	1031.794	0.787	893.851	81.851	
2	2	920	1021.713	0.900	856.087	63.913	
3	3	1268	1011.632	1.253	1092.042	175.958	
4	4	1280	1001.551	1.278	1218.004	61.996	
5	1	832	991.471	0.839	858.918	26.918	
6	2	791	981.390	0.806	822.300	31.300	
7	3	1071	971.309	1.103	1048.514	22.486	
8	4	1109	961.228	1.154	1168.966	59.966	
9	1	965	951.147	1.015	823.986	141.014	
10	2	844	941.066	0.897	788.513	55.487	
11	3	961	930.985	1.032	1004.985	43.985	
12	4	1160	920.904	1.260	1119.928	40.072	
13	1	751	910.824	0.825	789.053	38.053	
14	2	674	900.743	0.748	754.727	80.727	
15	3	828	890.662	0.930	961.456	133.456	
16	4	1033	880.581	1.173	1070.890	37.890	
					MAD $=68.442$		

\section*{| Quarter | Index |
| :---: | :---: |
| 1 | 0.866 |
| 2 | 0.838 |
| 3 | 1.079 |
| 4 | 1.216 |}

f. Sales $=[1041.875-10.081$ (Time period) $]$ [Quarterly index for the time period]
Period 17 sales $=[1041.875-10.081$ (17) $][.866]$
$=[870.498][.866]=753.851$
Period 18 sales $=[1041.875-10.081$ (18)][.838]
$=[860.417][.838]=721.029$
Period 19 sales $=[1041.875-10.081$ (19)][1.079]
$=[850.336][1.079]=917.513$
Period 20 sales $=[1041.875-10.081(20)][1.216]$ $=[840.255][1.216]=1021.750$
21. a.

b. The monthly time series shows two patterns, positive trend and seasonality. The seasonality is indicated with month 2 (February), the lowest of the months 1 through 12, and month 12 (December), the highest sales among the 12 months.
c. A trend model is appropriate because we want to estimate the increasing change in sales per month. A model with seasonal indexes is appropriate because we want to quantify the seasonal effects for each month.
d. \& e.

Period	MonthYear	Month	Sales (\$ millions)	Trend	Index	Forecast	Absolute Error
1	Jan-2017	1	51756	51783.400	0.999	51561.725	194.275
2	Feb-2017	2	48335	51990.778	0.930	48047.961	287.039
3	Mar-2017	3	53311	52198.157	1.021	53598.497	287.497
4	Apr-2017	4	52512	52405.535	1.002	51476.380	1035.620
5	May-2017	5	54479	52612.913	1.035	54469.068	9.932
6	Jun-2017	6	52941	52820.291	1.002	52852.076	88.924
7	Jul-2017	7	53859	53027.670	1.016	53613.256	245.744
8	Aug-2017	8	53769	53235.048	1.010	53716.695	52.305
9	Sep-2017	9	52865	53442.426	0.989	52263.675	601.325
10	Oct-2017	10	53296	53649.804	0.993	53038.863	257.137
11	Nov-2017	11	54191	53857.183	1.006	53766.627	424.373
12	Dec-2017	12	57847	54064.561	1.070	56775.978	1071.022
13	Jan-2018	1	53836	54271.939	0.992	54039.611	203.611
14	Feb-2018	2	50047	54479.317	0.919	50347.778	300.778
15	Mar-2018	3	56455	54686.696	1.032	56153.797	301.203
16	Apr-2018	4	52836	54894.074	0.963	53920.797	1084.797
17	May-2018	5	57035	55101.452	1.035	57045.402	10.402
18	Jun-2018	6	55249	55308.830	0.999	55342.113	93.113
19	Jul-2018	7	55872	55516.209	1.006	56129.276	257.276
20	Aug-2018	8	56173	55723.587	1.008	56227.750	54.750
21	Sep-2018	9	54068	55930.965	0.967	54697.326	629.326
22	Oct-2018	10	55230	56138.343	0.984	55499.064	269.064
23	Nov-2018	11	55807	56345.722	0.990	56250.982	443.982
24	Dec-2018	12	58269	56553.100	1.030	59389.321	1120.321
MAD $=388.492$							

Month	Index	Month	Index
1	0.996	7	1.011
2	0.924	8	1.009
3	1.027	9	0.978
4	0.982	10	0.989
5	1.035	11	0.998
6	1.001	12	1.050

f. Sales $=[51,576.022+207.378$ (Time period)] [Quarterly index for the time period]
Period 17 sales $=[51,576.022+207.378(25)][0.996]$

$$
=[56,760.478][0.996]=56,517.497
$$

Period 18 sales $=[51,576.022+207.378(26)][0.924]$
$=[56,967.857][0.924]=52,647.594$
Period 19 sales $=[51,576.022+207.378(27)][1.027]$
$=[57,175.235][1.027]=58,709.097$
Period 20 sales $=[51,576.022+207.378(28)][0.982]$

$$
=[57,382.613][0.982]=56,365.215
$$

23. Both techniques are used when a time series has no trend or seasonality. The pattern only shows random variation. Simple moving average selects a fixed number of data points from the past and uses the average as a forecast. All past data is equally weighted. Simple exponential smoothing uses all past available data and adjusts the weights of the past information based on the forecaster's choice of a smoothing constant
24. The time series has no seasonality.
25. a. The graph does not show any trend or seasonality. The graph shows a stationary pattern. Simple moving average models would be a good choice to compute forecasts.

b.

Period	Demand	5-Month Moving Average	Absolute Error
1	104		
2	132		
3	117		
4	120	115.4	25.6
5	104	122.8	2.8
6	141	120.4	15.6
7	120	124.2	15.2
8	136	122.0	21.0
9	109	129.8	12.2
10	143	127.8	21.0
11	142	123.2	14.8
12	109	126.2	0.8
13	113	120.2	13.2
14	124	112.6	16.2
15	113		
16	104		$M A D=14.4$
17			

d. The forecast demand for period 17 is 112.6 units.
e. The forecasting error is estimated with the MAD, which is 14.4. Applying the error, the forecast demand is most likely between 98.2 , or $112.6-14.4$, and 127.0 , or $112.6+14.4$.
29. a. The graph does not show any trend or seasonality. The graph shows a stationary pattern. Simple exponential smoothing models would be a good choice to compute forecasts

Demand

b.-d.

	Alpha $=$ Demand	$\mathbf{0 . 4}$ Exp Smooth	Error	Absolute Error
1	138			
2	131	138.000	-7.000	7.000
3	149	135.200	13.800	13.800
4	110	140.720	-30.720	30.720
5	175	128.432	46.568	46.568
6	194	147.059	46.941	46.941
7	166	165.836	0.164	0.164
8	103	165.901	-62.901	62.901
9	142	140.741	1.259	1.259
10	122	141.244	-19.244	19.244
11	121	133.547	-12.547	12.547
12	130	128.528	1.472	1.472
13	126	129.117	-3.117	3.117
14	140	127.870	12.130	12.130
15		132.722		
			MAD $=19.836$	

	Alpha $=$ Pemand	0.9 Exp Smooth	Error	Absolute Error
1	138			
2	131	138.000	-7.000	7.000
3	149	131.700	17.300	17.300
4	110	147.270	-37.270	37.270
5	175	113.727	61.273	61.273
6	194	168.873	25.127	25.127
7	166	191.487	-25.487	25.487
8	103	168.549	-65.549	65.549
9	142	109.555	32.445	32.445
10	122	138.755	-16.755	16.755
11	121	123.676	-2.676	2.676
12	130	121.268	8.732	8.732
13	126	129.127	-3.127	3.127
14	140	126.313	13.687	13.687
15		138.631		
		MAD $=24.341$		

e. Comparing the MAD's the simple exponential smoothing model with $\alpha=0.4$ forecasts with less error.
31. a

b. The graph shows a downward, negative trend in sales.
c. Forecasting with a trend model will reveal the average, per period, change in sales.
d. The Trend forecast model is Sales $=930.954-27.457$ (time period).
Based on the MAD, the forecasting error is ± 58.525

SUMMARY OUTPUT	
Regression Statistics	
Multiple R	0.900
R Square	0.811
Adjusted R Square	0.799
Standard Error	72.991
Observations	18

ANOVA							
	df	SS		MS		F	p-Value
Regression	1	365262.764		365262.764		68.559	0.000
Residual	16	85243.014		5327.688			
Total	17	450505.778					
		Coefficient	Stand	d Error	t-St	t	
Intercept		930.954			25.9		
Time period		- 27.457			-8.2		

Period	Sales	Trend Forecast	Absolute Error
1	988	903.497	84.503
2	990	876.040	113.960
3	859	848.583	10.417
4	781	821.126	40.126
5	691	793.668	102.668
6	776	766.211	9.789
7	677	738.754	61.754
8	690	711.297	21.297
9	605	683.840	78.840
10	604	656.383	52.383
11	670	628.925	41.075
12	703	601.468	101.532
13	550	574.011	24.011
14	427	546.554	19.554
15	493	519.097	26.097
16	524	491.639	32.361
17	563	464.182	98.818
18	471	436.725	34.275
			MAD $=58.525$

e. Based on the slope from the regression analysis, sales are decreasing at a rate of 27.457 units per period.
33. a.

b.

Period	Sales	Predicted	Residuals	Lagged Residual	Squared Differences	Squared Residuals
1	988	903.4971	84.5029			7140.7442
2	990	876.0399	113.9601	84.5029	867.7250	12986.9036
3	859	848.5827	10.4173	113.9601	10721.1172	108.5195
4	781	821.1256	-40.1256	10.4173	2554.5774	1610.0605
5	691	793.6684	-102.6684	-40.1256	3911.6053	10540.7976
6	776	766.2112	9.7888	-102.6684	12646.6156	95.8203
7	677	738.7540	-61.7540	9.7888	5118.3762	3813.5617
8	690	711.2969	-21.2969	-61.7540	1636.7828	453.5567
9	605	683.8397	-78.8397	-21.2969	3311.1770	6215.6979
10	604	656.3825	-52.3825	-78.8397	699.9820	2743.9289
11	670	628.9254	41.0746	-52.3825	8734.2431	1687.1267
12	703	601.4682	101.5318	41.0746	3655.0697	10308.7104
13	550	574.0110	-24.0110	101.5318	15761.0016	576.5285
14	427	546.5538	-119.5538	-24.0110	9128.4319	14293.1196
15	493	519.0967	-26.0967	-119.5538	8734.2431	681.0358
16	524	491.6395	32.3605	-26.0967	3417.2410	1047.2026
17	563	464.1823	98.8177	32.3605	4416.5558	9764.9342
18	471	436.7251	34.2749	98.8177	4165.7766	1174.7656
				Sums:	99480.5211	85243.0141
						$d=1.1670$

c. Based on $d=1.1670$, the result of the hypothesis test is inconclusive. We cannot make any determination regarding the presence of autocorrelation in the data.
35. a.

b. The time series has definite seasonality with peaks occurring in December and January, followed by a regular peak in August. There may be a slight negative trend over the time span.
c. The choice of this forecasting model is appropriate because of the seasonality and the hint of a small negative trend.

d.-f.

Month Number	Sales (\$ millions)	Period	Trend	Index	Forecast	Absolute Error
1	1428	1	876.8436	1.6286	1305.0642	122.9358
2	687	2	875.7412	0.7845	673.3858	13.6142
3	679	3	874.6387	0.7763	686.8877	7.8877
4	669	4	873.5363	0.7659	686.5074	17.5074
5	738	5	872.4339	0.8459	753.2469	15.2469
6	673	6	871.3314	0.7724	685.2503	12.2503
7	647	7	870.2290	0.7435	655.8122	8.8122
8	1484	8	869.1266	1.7075	1401.3967	82.6033
9	1024	9	868.0242	1.1797	990.5175	33.4825
10	675	10	866.9217	0.7786	685.7084	10.7084
11	702	11	865.8193	0.8108	708.7451	6.7451
12	1216	12	864.7169	1.4062	1202.6100	13.3900
1	1346	13	863.6144	1.5586	1285.3744	60.6256
2	651	14	862.5120	0.7548	663.2134	12.2134
3	667	15	861.4096	0.7743	676.4983	9.4983
4	689	16	860.3072	0.8009	676.1107	12.8893
5	741	17	859.2047	0.8624	741.8250	0.8250
6	664	18	858.1023	0.7738	674.8464	10.8464
7	629	19	856.9999	0.7340	645.8426	16.8426
8	1334	20	855.8974	1.5586	1380.0658	46.0658
9	957	21	854.7950	1.1196	975.4215	18.4215
10	649	22	853.6926	0.7602	675.2445	26.2445
11	663	23	852.5901	0.7776	697.9160	34.9160
12	1117	24	851.4877	1.3118	1184.2115	67.2115
1	1231	25	850.3853	1.4476	1265.6846	34.6846
2	669	26	849.2829	0.7877	653.0411	15.9589
3	694	27	848.1804	0.8182	666.1090	27.8910
4	670	28	847.0780	0.7910	665.7140	4.2860
5	746	29	845.9756	0.8818	730.4032	15.5968
6	687	30	844.8731	0.8131	664.4425	22.5575
7	661	31	843.7707	0.7834	635.8730	25.1270
8	1324	32	842.6683	1.5712	1358.7349	34.7349
9	946	33	841.5659	1.1241	960.3255	14.3255
10	701	34	840.4634	0.8341	664.7807	36.2193
11	728	35	839.3610	0.8673	687.0868	40.9132
12	1219	36	838.2586	1.4542	1165.8130	53.1870
1	1104	37	837.1561	1.3188	1245.9948	141.9948
2	626	38	836.0537	0.7488	642.8688	16.8688
3	645	39	834.9513	0.7725	655.7196	10.7196
MAD $=29.6628$						

Month	Index	Month	Index
1	1.4884	7	0.7536
2	0.7689	8	1.6124
3	0.7853	9	1.1411
4	0.7859	10	0.7910
5	0.8634	11	0.8186
6	0.7864	12	1.3908

e. The regression analysis shows a small decline of $-\$ 1.1024$ million per month.
f. Book sales are highest in December (39.08% higher than average) and January (48.84\% higher than average). There is also a "back-to-school" effect in August and September. Sales are the highest in August, 61.24\% higher than average. Book sales are lowest from February through July.
g.

Year	Month	Forecast Sales
2019	April	655.3173
2019	May	718.9813
2019	June	654.0385
2019	July	625.9034
2019	August	1337.4039
2019	September	945.2295
2019	October	654.3168
2019	November	676.2576
2019	December	1147.4145

h. Given the MAD's estimate of error in the forecasting model, the forecasts could be off by $\pm \$ 29.6628$ million. For July, this is $29.6628 / 625.9034$, which is a 4.7% error. The percentage errors for the other months would be even less. Because this time series approach to forecasting replicates historical patterns in sales, the disclaimer is that the forecasts assume that the future sales will be similar to sales over the previous 39 months.

CHAPTER 19

1.

Price high Long wait

Count	38	23	12	10	8
Percent	42	25	13	11	9
Cum \%	42	67	80	91	100

About 67% of the complaints concern the problem not being corrected and the price being too high.
3. Chance variation is random in nature; because the cause is a variety of factors, it cannot be entirely eliminated. Assignable variation is not random; it is usually due to a specific cause and can be eliminated.
5. a. The A_{2} factor is 0.729 .
b. The value for D_{3} is 0 , and for D_{4} it is 2.282 .
7. a. $U C L$

Time	$\overline{\boldsymbol{x}}$, Arithmetic Means	\boldsymbol{R}, Range
8:00 a.m.	46	16
8:30 a.m.	40.5	6
9:00 a.m.	44	6
9:30 a.m.	40	2
10:00 a.m.	41.5	9
10:30 a.m.	$\underline{39.5}$	$\underline{1}$
	251.5	40

$$
\begin{aligned}
& \overline{\bar{x}}=\frac{251.5}{6}=41.92 \quad \bar{R}=\frac{40}{6}=6.67 \\
& U C L=41.92+0.729(6.67)=46.78 \\
& L C L=41.92-0.729(6.67)=37.06
\end{aligned}
$$

b. Interpreting, the mean reading was 341.92 degrees Fahrenheit. If the oven continues operating as evidenced by the first six hourly readings, about 99.7% of the mean readings will lie between 337.06 degrees and 346.78 degrees.
9. a. The fraction defective is 0.0507 . The upper control limit is 0.0801 and the lower control limit is 0.0213 .
b. Yes, the seventh and ninth samples indicate the process is out of control.
c. The process appears to stay the same.
11. $\bar{c}=\frac{37}{14}=2.64$
$2.64 \pm 3 \sqrt{2.64}$
The control limits are 0 and 7.5. The process is out of control on the seventh day.
13. $\bar{c}=\frac{6}{11}=0.545$
$0.545 \pm 2 \sqrt{0.545}=0.545 \pm 2.215$
The control limits are from 0 to 2.760 , so there are no receipts out of control.
15.

Percent Defective	Probability of Accepting Lot
10	.889
20	.558
30	.253
40	.083

17. $P(x \leq 1 \mid n=10, \pi=.10)=.736$
$P(x \leq 1 \mid n=10, \pi=.20)=.375$
$P(x \leq 1 \mid n=10, \pi=.30)=.149$
$P(x \leq 1 \mid n=10, \pi=.40)=.046$

18.

21. a. Mean: $U C L=10.0+0.577(0.25)=10.0+0.14425$

$$
=10.14425
$$

$$
L C L=10.0-0.577(0.25)=10.0-0.14425
$$

$$
=9.85575
$$

Range: $U C L=2.115(0.25)=0.52875$

$$
L C L=0(0.25)=0
$$

b. The mean is 10.16 , which is above the upper control limit and is out of control. There is too much cola in the soft drinks. The process is in control for variation; an adjustment is needed.
23. a. $\overline{\bar{x}}=\frac{611.3333}{20}=30.57$
$\bar{R}=\frac{312}{20}=15.6$
Mean: UCL $=30.5665+(1.023)(15.6)=46.53$
$L C L=30.5665-(1.023)(15.6)=14.61$
Range: $U C L=2.575(15.6)=40.17$
b.

c. The points all seem to be within the control limits. No adjustments are necessary.
25. $\overline{\bar{X}}=\frac{-0.5}{18}=-0.0278 \quad \bar{R}=\frac{27}{18}=1.5$
$U C L=-.0278+(0.729)(1.5)=1.065$
LCL $=-.0278-(0.729)(1.5)=-1.121$
$U C L=2.282(1.5)=3.423$
The X-bar chart indicates that the "process" was in control. However, the R-bar chart indicates that the performance on hole 12 was outside the limits.
27.
a. $p=\frac{40}{10(50)}=0.08 \quad 3 \sqrt{\frac{0.08(0.92)}{50}}=0.115$
$U C L=0.08+0.115=0.195$
$L C L=0.08-0.115=0$
b.

c. There are no points that exceed the limits.
29.

These sample results indicate that the odds are much less than 5050 for an increase. The percent of stocks that increase is "in control" around 0.25 , or 25%. The control limits are 0.06629 and 0.4337 .
31. $P(x \leq 3 \mid n=10, \pi=0.05)=0.999$
$P(x \leq 3 \mid n=10, \pi=0.10)=0.987$
$P(x \leq 3 \mid n=10, \pi=0.20)=0.878$
$P(x \leq 3 \mid n=10, \pi=0.30)=0.649$
$P(x \leq 5 \mid n=20, \pi=0.05)=0.999$
$P(x \leq 5 \mid n=20, \pi=0.10)=0.989$
$P(x \leq 5 \mid n=20, \pi=0.20)=0.805$
$P(x \leq 5 \mid n=20, \pi=0.30)=0.417$

The solid line is the operating characteristic curve for the first plan, and the dashed line, the second. The supplier would prefer the first because the probability of acceptance is higher (above). However, if he is really sure of his quality, the second plan seems higher at the very low range of defect percentages and might be preferred.
33. a. $\bar{c}=\frac{213}{15}=14.2 ; 3 \sqrt{14.2}=11.30$

$$
U C L=14.2+11.3=25.5
$$

$L C L=14.2-11.3=2.9$
b.

c. All the points are in control.
35. $\bar{c}=\frac{70}{10}=7.0$

37. $P(x \leq 3 \mid n=20, \pi=.10)=.867$
$P(x \leq 3 \mid n=20, \pi=.20)=.412$
$P(x \leq 3 \mid n=20, \pi=.30)=.108$

APPENDIX C: ANSWERS

Answers to Odd-Numbered Review Exercises

REVIEW OF CHAPTERS 1-4

PROBLEMS

1. a. Mean is 147.9. Median is 148.5 . Standard deviation is 69.24 .
b. The first quartile is 106 . The third quartile is 186.25 .

There are no outliers. The distribution is symmetric. The whiskers and the boxes are about equal on the two sides.
d. $2^{6}=64$, use six classes; $i=\frac{299-14}{6}=47.5$, use $i=50$.

Amount	Frequency
$\$ 0$ up to $\$ 50$	3
50 up to 100	8
100 up to 150	15
150 up to 200	13
200 up to 250	7
250 up to 300	$\underline{7}$
Total	50

e. Answers will vary but include all of the above information.
3. a. Mean is $\$ 55,224$. Median is $\$ 54,916$. Standard deviation is \$9,208.
b. The first quartile is $\$ 48,060$. The third quartile is 60,730 .
c.

The distribution is symmetric with no outliers.
d.

Amounts	Frequency
$35000-42999$	5
$43000-50999$	12
$51000-58999$	18
$59000-66999$	9
$67000-74999$	6
$75000-82999$	$\underline{1}$
Total	$\mathbf{5 1}$

e. Answers will vary but include all of the above information.
5. a. Box plot
b. Median is 48 , the first quartile is 24 , and the third quartile is 84
c. Positively skewed with the long tail to the right.
d. You cannot determine the number of observations.

REVIEW OF CHAPTERS 5-7

PROBLEMS

1. a. . 035
b. . 018
c. .648
2. a. . 0401
b. 6147
c. 7,440
3. a. $\mu=1.10$
$\sigma=1.18$
b. About 550
c. $\mu=1.833$

REVIEW OF CHAPTERS 8 AND 9

PROBLEMS

1. $z=\frac{8.8-8.6}{2.0 / \sqrt{35}}=0.59, .5000-.2224=.2776$
2. $160 \pm 2.426 \frac{20}{\sqrt{40}}, 152.33$ up to 167.67
3. $985.5 \pm 2.571 \frac{115.5}{\sqrt{6}}, 864.27$ up to $1,106.73$
4. $240 \pm 2.131 \frac{35}{\sqrt{16}}, 221.35$ up to 258.65

Because 250 is in the interval, the evidence does not indicate an increase in production
9. $n=\left[\frac{1.96(25)}{4}\right]^{2}=150$
11. $n=.08(.92)\left(\frac{2.33}{0.22}\right)^{2}=999$
13. $n=.4(.6)\left(\frac{2.33}{0.03}\right)^{2}=1,448$

REVIEW OF CHAPTERS 10-12

PROBLEMS

1. $H_{0}: \mu \geq 36 ; H_{1}: \mu<36$. Reject H_{0} if $t<-1.683$.

$$
t=\frac{35.5-36.0}{0.9 / \sqrt{42}}=-3.60
$$

Reject H_{0}. The mean height is less than 36 inches
3. $H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1} \neq \mu_{2}$

Reject H_{0} if $t<-2.845$ or $t>2.845$

$$
\begin{aligned}
s_{p}^{2} & =\frac{(12-1)(5)^{2}+(10-1)(8)^{2}}{12+10+2}=42.55 \\
t & =\frac{250-252}{\sqrt{42.55\left(\frac{1}{12}+\frac{1}{10}\right)}}=-0.716
\end{aligned}
$$

H_{0} is not rejected. There is no difference in the mean strength of the two glues.
5. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4} \quad H_{1}$: The means are not all the same. H_{0} rejected if $F>3.29$.

Source	SS	$\boldsymbol{d f}$	MS	\boldsymbol{F}
Treatments	20.736	3	6.91	1.04
Error	$\underline{100.00}$	$\frac{15}{12}$	6.67	
Total	120.736	18		

H_{0} is not rejected. There is no difference in the mean sales.
7. a. From the graph, marketing salaries may be acting differently.
b. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3}=\mu_{4}$
H_{1} : At least one mean is different (for four majors)
$H_{0}: \mu_{1}=\mu_{2}=\mu_{3}$
H_{1} : At least one mean is different (for 3 years).
H_{0} : There is no interaction.
H_{1} : There is interaction.
c. The p-value (.482) is high. Do not reject the hypothesis of no interaction.
d. The p-value for majors is small (. $034<.05$), so there is a difference among mean salaries by major. There is no difference from one year to the next in mean salaries (. $894>.05$).

REVIEW OF CHAPTERS 13 AND 14
 \section*{PROBLEMS}

1. a. Profit
b. $\hat{y}=a+b_{1} x_{1}+b_{2} x_{2}+b_{3} x_{3}+b_{4} x_{4}$
c. $\$ 163,200$
d. About 86% of the variation in net profit is explained by the four variables.
e. About 68% of the net profits would be within $\$ 3,000$ of the estimates; about 95% would be within $2(\$ 3,000)$, or $\$ 6,000$, of the estimates; and virtually all would be within $3(\$ 3,000)$, or $\$ 9,000$, of the estimates.
2. a. 0.9261
b. 2.0469 , found by $\sqrt{83.8 / 20}$
c. $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0$
H_{1} : Not all coefficients are zero
Reject if $F>2.87$; computed $F=62.697$, found by 162.70/4.19.
d. Could delete x_{2} because t-ratio (1.29) is less than the critical t-value of 2.086. Otherwise, reject H_{0} for x_{1}, x_{3}, and x_{4} because all of those t-ratios are greater than 2.086.

REVIEW OF CHAPTERS 15 AND 16

PROBLEMS

1. H_{0} : Median ≤ 60
H_{1} : Median >60
$\mu=20(.5)=10$
$\sigma=\sqrt{20(.5)(.5)}=2.2361$
H_{0} is rejected if $z>1.65$. There are 16 observations greater than 60 .

$$
z=\frac{15.5-10.0}{2.2361}=2.46
$$

Reject H_{0}. The median sales per day are greater than 60 .
3. H_{0} : The population lengths are the same
H_{1} : The population lengths are not the same.
H_{0} is rejected if H is >5.991.

$$
\begin{aligned}
H & =\frac{12}{24(24+1)}\left[\frac{(104.5)^{2}}{7}+\frac{(125.5)^{2}}{9}+\frac{(70)^{2}}{8}\right]-3(24+1) \\
& =78.451-75=3.451
\end{aligned}
$$

Do not reject H_{0}. The population lengths are the same.

REVIEW OF CHAPTERS 17 AND 18

PROBLEMS

1. a. 156.6 , found by $(16,915 / 10,799) 100$
b. 153.0, found by $(16,615 / 11,056.7) 100$. Note: $11,056.7$ is the average for the period 2008 to 2010.
c. $9,535+854.4 t$ and 18,079 , found by $9,535+854.4$ (10)
2. 55.44 , found by $1.20[3.5+(0.7)(61)]$, and 44.73 , found by 0.90[3.5 + (0.7)(66)]

APPENDIX C: ANSWERS

Solutions to Practice Tests

PRACTICE TEST (AFTER CHAPTER 4)

PART 1

1. statistics
2. descriptive statistics
3. population
. quantitative and qualitative
4. discrete
. nomina
5. nominal
6. zero
7. seven
8. 50
9. variance
10. never
11. median

PART 2

1. $\sqrt[3]{(1.18)(1.04)(1.02)}=1.0777$, or 7.77%
2. a. $\$ 30,000$
b. 105
c. 52
d. 0.19 , found by $20 / 105$
e. 165
f. 120 and 330
3. a. 70
b. 71.5
c. 67.8
d. 28
e. 9.34
4. $\$ 44.20$, found by $[(200) \$ 36+(300) \$ 40+(500) \$ 50] / 1,000$
5. a. pie chart
b. 11.1
c. three times
d. 65%

PRACTICE TEST (AFTER CHAPTER 7)
PART 1

1. never
2. experiment
3. event
4. joint
5. a. permutation
b. combination
6. one
7. three or more outcomes
8. infinite
9. one
10. 0.2764
11. 0.0475
12. independent
13. mutually exclusive
14. only two outcomes
15. bell-shaped

PART 2

1. a. 0.0526 , found by $(5 / 20)(4 / 19)$
b. 0.4474 , found by $1-(15 / 20)(14 / 19)$
2. a. 0.2097 , found by $16(.15)(.85)^{15}$
b. 0.9257 , found by $1-(.85)^{16}$
3. 720 , found by $6 \times 5 \times 4 \times 3 \times 2$
4. a. 2.2 , found by $.2(1)+.5(2)+.2(3)+.1(4)$
b. 0.76 , found by $.2(1.44)+.5(0.04)+.2(0.64)+.1(3.24)$
5. a. 0.1808 . The z-value for $\$ 2,000$ is 0.47 , found by (2,000-1,600)/850.
b. 0.4747 , found by $0.2939+0.1808$
c. 0.0301 , found by $0.5000-0.4699$
6. a. contingency table
b. 0.625 , found by $50 / 80$
c. 0.75 , found by $60 / 80$
d. 0.40 , found by $20 / 50$
e. 0.125 , found by $10 / 80$
7. a. 0.0498 , found by $\frac{3^{0} e^{-3}}{0!}$
b. 0.2240 , found by $\frac{3^{3} e^{-3}}{3!}$
c. 0.1847 , found by $1-[0.0498+0.1494+0.2240+0.2240$ $+0.1680]$
d. 0025

PRACTICE TEST (AFTER CHAPTER 9)
PART 1

1. random sample
2. sampling error
3. standard error
4. become smaller
5. point estimate
6. confidence interval
7. population size
8. proportion
9. positively skewed
10. 0.5

PART 2

1. 0.0351 , found by $0.5000-0.4649$. The corresponding
$z=\frac{11-12.2}{2.3 / \sqrt{12}}=-1.81$
2. a. The population mean is unknown.
b. 9.3 years, which is the sample mean
c. 0.3922 , found by $2 / \sqrt{26}$
d. The confidence interval is from 8.63 up to 9.97 , found by

$$
9.3 \pm 1.708\left(\frac{2}{\sqrt{26}}\right)
$$

3. 2,675 , found by $.27(1-.27)\left(\frac{2.33}{.02}\right)^{2}$
4. The confidence interval is from 0.5459 up to 0.7341 , found by

$$
64 \pm 1.96 \sqrt{\frac{.64(1-.64)}{100}}
$$

PRACTICE TEST (AFTER CHAPTER 12)

PART 1

1. null hypothesis
2. significance level
3. p-value
4. standard deviation
5. normality
6. test statistic
7. split evenly between the two tails
8. range from negative infinity to positive infinity
9. independent
10. three and 20

PART 2

1. $H_{0}: \mu \leq 90 \quad H_{1}: \mu>90$ If $t>2.567$, reject H_{0}.
$t=\frac{96-90}{12 / \sqrt{18}}=2.12$
Do not reject the null. The mean time in the park could be 90 minutes.
2. $H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1} \neq \mu_{2}$
$d f=14+12-2=24$
If $t<-2.064$ or $t>2.064$, then reject H_{0}.
$s_{p}^{2}=\frac{(14-1)(30)^{2}+(12-1)(40)^{2}}{14+12-2}=1,220.83$
$t=\frac{837-797}{\sqrt{1,220.83\left(\frac{1}{14}+\frac{1}{12}\right)}}=\frac{40.0}{13.7455}=2.910$
Reject the null hypothesis. There is a difference in the mean miles traveled.
3. a. three, because there are $2 d f$ between groups.
b. 21, found by the total degrees of freedom plus 1
c. If the significance level is .05 , the critical value is 3.55 .
d. $H_{0}: \mu_{1}=\mu_{2}=\mu_{3} \quad H_{1}$: Treatment means are not all the same.
e. At a 5% significance level, the null hypothesis is rejected.
f. At a 5% significance level, we can conclude the treatment means differ.

PRACTICE TEST (AFTER CHAPTER 14) PART 1

1. vertical
2. interval
3. zero
4. -0.77
5. never
6. 7
7. decrease of .5
8. -0.9
9. zero
10. unlimited
11. linear
12. residual
13. two
14. correlation matrix
15. normal distribution

PART 2

1. a. 30
b. The regression equation is $\hat{y}=90.619 X-0.9401$. If X is zero, the line crosses the vertical axis at -0.9401 . As the independent variable increases by one unit, the dependent variable increases by 90.619 units.
c. 905.2499
d. 0.3412 , found by $129.7275 / 380.1667$. Thirty-four percent of the variation in the dependent variable is explained by the independent variable
e. 0.5842 , found by $\sqrt{0.3412} \quad H_{0}: p \geq 0 \quad H_{1}: p<0$ Using a significance level of .01, reject H_{0} if $t>2.467$

$$
t=\frac{0.5842 \sqrt{30-2}}{\sqrt{1-(0.5842)^{2}}}=3.81
$$

Reject H_{0}. There is a negative correlation between the variables.
2.
a. 30
b. 4
c. 0.5974 , found by $227.0928 / 380.1667$
d. $H_{0}: \beta_{1}=\beta_{2}=\beta_{3}=\beta_{4}=0 \quad H_{1}:$ Not all β s are 0 . Reject H_{0} if $F>4.18$ (using a 1% level of significance). Since the computed value of F is 9.27 , reject H_{0}. Not all of the regression coefficients are zero.
e. Reject H_{0} if $t>2.787$ or $t<-2.787$ (using a 1% level of significance). Drop variable 2 initially and then rerun. Perhaps you will delete variable(s) 1 and/or 4 also.

PRACTICE TEST (AFTER CHAPTER 16) PART 1

1. nominal
2. at least 30 observations
3. two
4. 6
5. number of categories
6. dependent
7. binomial
8. comparing two or more independent samples
9. never
10. normal populations, equal standard deviations

PART 2

1. H_{0} : The proportions are as stated.
H_{1} : The proportions are not as stated.
Using a significance level of .05 , reject H_{0} if $\chi^{2}>7.815$.

$$
\begin{aligned}
x^{2}= & \frac{(120-130)^{2}}{130}+\frac{(40-40)^{2}}{40} \\
& +\frac{(30-20)^{2}}{20}+\frac{(10-10)^{2}}{10}=5.769
\end{aligned}
$$

Do not reject H_{0}. Proportions could be as declared.
2. H_{0} : No relationship between gender and book type.
H_{1} : There is a relationship between gender and book type.
Using a significance level of .01, reject H_{0} if $\chi^{2}>9.21$.
$x^{2}=\frac{(250-197.3)^{2}}{197.3}+\cdots+\frac{(200-187.5)^{2}}{187.5}=54.84$
Reject H_{0}. There is a relationship between gender and book type.
3. H_{0} : The distributions are the same.
H_{1} : The distributions are not the same
H_{0} is rejected if $H>5.99$.

$\mathbf{8 : 0 0}$	a.m. Ranks	$\mathbf{1 0 : 0 0}$	a.m. Ranks	$\mathbf{1 : 3 0}$	p.m. Ranks
68	6	59	1.5	67	5
84	20	59	1.5	69	7
75	10.5	63	4	75	10.5
78	15.5	62	3	76	12.5
70	8	78	15.5	79	17
77	14	76	12.5	83	19
88	24	80	18	86	21.5
71	9			86	21.5
				87	23
			56		137
Sums	107	7		9	
Count	8				

$$
H=\frac{12}{24(25)}\left[\frac{107^{2}}{8}+\frac{56^{2}}{7}+\frac{137^{2}}{9}\right]-3(25)=4.29
$$

H_{0} is not rejected. There is no difference in the three distributions.
4. $H_{0}: \pi \leq 1 / 3 \quad H_{1}: \pi>1 / 3$

At the .01 significance level, the decision rule is to reject H_{0} if $z>$ 2.326 .
$z=\frac{\left[\frac{210}{500}-\frac{1}{3}\right]}{\sqrt{\frac{\left(\frac{1}{3}\right)\left(1-\frac{1}{3}\right)}{500}}}=\frac{0.08667}{0.02108}=4.11$
Reject the null hypothesis.
The actual proportion of Louisiana children who were obese or overweight is more than one out of three.

PRACTICE TEST (AFTER CHAPTER 18) PART 1

1. denominator
2. index
3. quantity
4. base period
5. 1982-1984
6. trend
7. moving average
8. autocorrelation
9. residual
10. same

PART 2

1. a. 111.54 , found by $(145,000 / 130,000) \times 100$ for 201392.31 , found by
$(120,000 / 130,000) \times 100$ for 2014130.77 , found by $(170,000 / 130,000) \times 100$ for 2015146.15 , found by $(190,000 / 130,000) \times 100$ for 2016
b. 87.27 , found by $(120,000 / 137,500) \times 100$ for 2014126.64 found by
$(170,000 / 137,500) \times 100$ for 2015138.18 , found by $(190,000 / 137,500) \times 100$ for 2016
2. a. 108.91 , found by $(1,100 / 1,010) \times 100$
b. 111.18 , found by $(4,525 / 4,070) \times 100$
c. 110.20 , found by $(5,400 / 4,900) \times 100$
d. 110.69 , found by the square root of $(111.18) \times(110.20)$
3. For January of the fifth year, the seasonally adjusted forecast is 70.0875 , found by $1.05 \times[5.50+1.25(49)]$

For February of the fifth year, the seasonally adjusted forecast is 66.844 , found by $0.983 \times[5.50+1.25(50)]$

